Abstract:This report describes the UNISOUND submission for Track1 and Track2 of VoxCeleb Speaker Recognition Challenge 2023 (VoxSRC 2023). We submit the same system on Track 1 and Track 2, which is trained with only VoxCeleb2-dev. Large-scale ResNet and RepVGG architectures are developed for the challenge. We propose a consistency-aware score calibration method, which leverages the stability of audio voiceprints in similarity score by a Consistency Measure Factor (CMF). CMF brings a huge performance boost in this challenge. Our final system is a fusion of six models and achieves the first place in Track 1 and second place in Track 2 of VoxSRC 2023. The minDCF of our submission is 0.0855 and the EER is 1.5880%.
Abstract:Multivariate time-series anomaly detection is critically important in many applications, including retail, transportation, power grid, and water treatment plants. Existing approaches for this problem mostly employ either statistical models which cannot capture the non-linear relations well or conventional deep learning models (e.g., CNN and LSTM) that do not explicitly learn the pairwise correlations among variables. To overcome these limitations, we propose a novel method, correlation-aware spatial-temporal graph learning (termed CST-GL), for time series anomaly detection. CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module based on which a spatial-temporal graph neural network (STGNN) can be developed. Then, by employing a graph convolution network that exploits one- and multi-hop neighbor information, our STGNN component can encode rich spatial information from complex pairwise dependencies between variables. With a temporal module that consists of dilated convolutional functions, the STGNN can further capture long-range dependence over time. A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner. Experimental results demonstrate that CST-GL can detect anomalies effectively in general settings as well as enable early detection across different time delays.
Abstract:Robot localization using a previously built map is essential for a variety of tasks including highly accurate navigation and mobile manipulation. A popular approach to robot localization is based on image-to-point cloud registration, which combines illumination-invariant LiDAR-based mapping with economical image-based localization. However, the recent works for image-to-point cloud registration either divide the registration into separate modules or project the point cloud to the depth image to register the RGB and depth images. In this paper, we present I2PNet, a novel end-to-end 2D-3D registration network. I2PNet directly registers the raw 3D point cloud with the 2D RGB image using differential modules with a unique target. The 2D-3D cost volume module for differential 2D-3D association is proposed to bridge feature extraction and pose regression. 2D-3D cost volume module implicitly constructs the soft point-to-pixel correspondence on the intrinsic-independent normalized plane of the pinhole camera model. Moreover, we introduce an outlier mask prediction module to filter the outliers in the 2D-3D association before pose regression. Furthermore, we propose the coarse-to-fine 2D-3D registration architecture to increase localization accuracy. We conduct extensive localization experiments on the KITTI Odometry and nuScenes datasets. The results demonstrate that I2PNet outperforms the state-of-the-art by a large margin. In addition, I2PNet has a higher efficiency than the previous works and can perform the localization in real-time. Moreover, we extend the application of I2PNet to the camera-LiDAR online calibration and demonstrate that I2PNet outperforms recent approaches on the online calibration task.
Abstract:Real-world graphs generally have only one kind of tendency in their connections. These connections are either homophily-prone or heterophily-prone. While graphs with homophily-prone edges tend to connect nodes with the same class (i.e., intra-class nodes), heterophily-prone edges tend to build relationships between nodes with different classes (i.e., inter-class nodes). Existing GNNs only take the original graph during training. The problem with this approach is that it forgets to take into consideration the ``missing-half" structural information, that is, heterophily-prone topology for homophily-prone graphs and homophily-prone topology for heterophily-prone graphs. In our paper, we introduce Graph cOmplementAry Learning, namely GOAL, which consists of two components: graph complementation and complemented graph convolution. The first component finds the missing-half structural information for a given graph to complement it. The complemented graph has two sets of graphs including both homophily- and heterophily-prone topology. In the latter component, to handle complemented graphs, we design a new graph convolution from the perspective of optimisation. The experiment results show that GOAL consistently outperforms all baselines in eight real-world datasets.
Abstract:We study the task of spatio-temporal extrapolation that generates data at target locations from surrounding contexts in a graph. This task is crucial as sensors that collect data are sparsely deployed, resulting in a lack of fine-grained information due to high deployment and maintenance costs. Existing methods either use learning-based models like Neural Networks or statistical approaches like Gaussian Processes for this task. However, the former lacks uncertainty estimates and the latter fails to capture complex spatial and temporal correlations effectively. To address these issues, we propose Spatio-Temporal Graph Neural Processes (STGNP), a neural latent variable model which commands these capabilities simultaneously. Specifically, we first learn deterministic spatio-temporal representations by stacking layers of causal convolutions and cross-set graph neural networks. Then, we learn latent variables for target locations through vertical latent state transitions along layers and obtain extrapolations. Importantly during the transitions, we propose Graph Bayesian Aggregation (GBA), a Bayesian graph aggregator that aggregates contexts considering uncertainties in context data and graph structure. Extensive experiments show that STGNP has desirable properties such as uncertainty estimates and strong learning capabilities, and achieves state-of-the-art results by a clear margin.
Abstract:Tactile sensors are believed to be essential in robotic manipulation, and prior works often rely on experts to reason the sensor feedback and design a controller. With the recent advancement in data-driven approaches, complicated manipulation can be realised, but an accurate and efficient tactile simulation is necessary for policy training. To this end, we present an approach to model a commonly used pressure sensor array in simulation and to train a tactile-based manipulation policy with sim-to-real transfer in mind. Each taxel in our model is represented as a mass-spring-damper system, in which the parameters are iteratively identified as plausible ranges. This allows a policy to be trained with domain randomisation which improves its robustness to different environments. Then, we introduce encoders to further align the critical tactile features in a latent space. Finally, our experiments answer questions on tactile-based manipulation, tactile modelling and sim-to-real performance.
Abstract:Millions of slum dwellers suffer from poor accessibility to urban services due to inadequate road infrastructure within slums, and road planning for slums is critical to the sustainable development of cities. Existing re-blocking or heuristic methods are either time-consuming which cannot generalize to different slums, or yield sub-optimal road plans in terms of accessibility and construction costs. In this paper, we present a deep reinforcement learning based approach to automatically layout roads for slums. We propose a generic graph model to capture the topological structure of a slum, and devise a novel graph neural network to select locations for the planned roads. Through masked policy optimization, our model can generate road plans that connect places in a slum at minimal construction costs. Extensive experiments on real-world slums in different countries verify the effectiveness of our model, which can significantly improve accessibility by 14.3% against existing baseline methods. Further investigations on transferring across different tasks demonstrate that our model can master road planning skills in simple scenarios and adapt them to much more complicated ones, indicating the potential of applying our model in real-world slum upgrading.
Abstract:Continuous in-hand manipulation is an important physical interaction skill, where tactile sensing provides indispensable contact information to enable dexterous manipulation of small objects. This work proposed a framework for end-to-end policy learning with tactile feedback and sim-to-real transfer, which achieved fine in-hand manipulation that controls the pose of a thin cylindrical object, such as a long stick, to track various continuous trajectories through multiple contacts of three fingertips of a dexterous robot hand with tactile sensor arrays. We estimated the central contact position between the stick and each fingertip from the high-dimensional tactile information and showed that the learned policies achieved effective manipulation performance with the processed tactile feedback. The policies were trained with deep reinforcement learning in simulation and successfully transferred to real-world experiments, using coordinated model calibration and domain randomization. We evaluated the effectiveness of tactile information via comparative studies and validated the sim-to-real performance through real-world experiments.
Abstract:With the development of sophisticated sensors and large database technologies, more and more spatio-temporal data in urban systems are recorded and stored. Predictive learning for the evolution patterns of these spatio-temporal data is a basic but important loop in urban computing, which can better support urban intelligent management decisions, especially in the fields of transportation, environment, security, public health, etc. Since traditional statistical learning and deep learning methods can hardly capture the complex correlations in the urban spatio-temporal data, the framework of spatio-temporal graph neural network (STGNN) has been proposed in recent years. STGNNs enable the extraction of complex spatio-temporal dependencies by integrating graph neural networks (GNNs) and various temporal learning methods. However, for different predictive learning tasks, it is a challenging problem to effectively design the spatial dependencies learning modules, temporal dependencies learning modules and spatio-temporal dependencies fusion methods in STGNN framework. In this paper, we provide a comprehensive survey on recent progress on STGNN technologies for predictive learning in urban computing. We first briefly introduce the construction methods of spatio-temporal graph data and popular deep learning models that are employed in STGNNs. Then we sort out the main application domains and specific predictive learning tasks from the existing literature. Next we analyze the design approaches of STGNN framework and the combination with some advanced technologies in recent years. Finally, we conclude the limitations of the existing research and propose some potential directions.
Abstract:Considering the ill-posed nature, contrastive regularization has been developed for single image dehazing, introducing the information from negative images as a lower bound. However, the contrastive samples are nonconsensual, as the negatives are usually represented distantly from the clear (i.e., positive) image, leaving the solution space still under-constricted. Moreover, the interpretability of deep dehazing models is underexplored towards the physics of the hazing process. In this paper, we propose a novel curricular contrastive regularization targeted at a consensual contrastive space as opposed to a non-consensual one. Our negatives, which provide better lower-bound constraints, can be assembled from 1) the hazy image, and 2) corresponding restorations by other existing methods. Further, due to the different similarities between the embeddings of the clear image and negatives, the learning difficulty of the multiple components is intrinsically imbalanced. To tackle this issue, we customize a curriculum learning strategy to reweight the importance of different negatives. In addition, to improve the interpretability in the feature space, we build a physics-aware dual-branch unit according to the atmospheric scattering model. With the unit, as well as curricular contrastive regularization, we establish our dehazing network, named C2PNet. Extensive experiments demonstrate that our C2PNet significantly outperforms state-of-the-art methods, with extreme PSNR boosts of 3.94dB and 1.50dB, respectively, on SOTS-indoor and SOTS-outdoor datasets.