Abstract:Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Abstract:Modeling human mobility across diverse cities is essential for applications such as urban planning, transportation optimization, and personalized services. However, generalization remains challenging due to heterogeneous spatial representations and mobility patterns across cities. Existing methods typically rely on numerical coordinates or require training city-specific models, limiting their scalability and transferability. We propose TrajMoE, a unified and scalable model for cross-city human mobility modeling. TrajMoE addresses two key challenges: (1) inconsistent spatial semantics across cities, and (2) diverse urban mobility patterns. To tackle these, we begin by designing a spatial semantic encoder that learns transferable location representations from POI-based functional semantics and visit patterns. Furthermore, we design a Spatially-Aware Mixture-of-Experts (SAMoE) Transformer that injects structured priors into experts specialized in distinct mobility semantics, along with a shared expert to capture city-invariant patterns and enable adaptive cross-city generalization. Extensive experiments demonstrate that TrajMoE achieves up to 27% relative improvement over competitive mobility foundation models after only one epoch of fine-tuning, and consistently outperforms full-data baselines using merely 5% of target city data. These results establish TrajMoE as a significant step toward realizing a truly generalizable, transferable, and pretrainable foundation model for human mobility.
Abstract:In recent years, foundational models have revolutionized the fields of language and vision, demonstrating remarkable abilities in understanding and generating complex data; however, similar advances in user behavior modeling have been limited, largely due to the complexity of behavioral data and the challenges involved in capturing intricate temporal and contextual relationships in user activities. To address this, we propose BehaveGPT, a foundational model designed specifically for large-scale user behavior prediction. Leveraging transformer-based architecture and a novel pretraining paradigm, BehaveGPT is trained on vast user behavior datasets, allowing it to learn complex behavior patterns and support a range of downstream tasks, including next behavior prediction, long-term generation, and cross-domain adaptation. Our approach introduces the DRO-based pretraining paradigm tailored for user behavior data, which improves model generalization and transferability by equitably modeling both head and tail behaviors. Extensive experiments on real-world datasets demonstrate that BehaveGPT outperforms state-of-the-art baselines, achieving more than a 10% improvement in macro and weighted recall, showcasing its ability to effectively capture and predict user behavior. Furthermore, we measure the scaling law in the user behavior domain for the first time on the Honor dataset, providing insights into how model performance scales with increased data and parameter sizes.
Abstract:Predicting human daily behavior is challenging due to the complexity of routine patterns and short-term fluctuations. While data-driven models have improved behavior prediction by leveraging empirical data from various platforms and devices, the reliance on sensitive, large-scale user data raises privacy concerns and limits data availability. Synthetic data generation has emerged as a promising solution, though existing methods are often limited to specific applications. In this work, we introduce BehaviorGen, a framework that uses large language models (LLMs) to generate high-quality synthetic behavior data. By simulating user behavior based on profiles and real events, BehaviorGen supports data augmentation and replacement in behavior prediction models. We evaluate its performance in scenarios such as pertaining augmentation, fine-tuning replacement, and fine-tuning augmentation, achieving significant improvements in human mobility and smartphone usage predictions, with gains of up to 18.9%. Our results demonstrate the potential of BehaviorGen to enhance user behavior modeling through flexible and privacy-preserving synthetic data generation.
Abstract:Predicting user behavior is essential for intelligent assistant services, yet deep learning models often struggle to capture long-tailed behaviors. Large language models (LLMs), with their pretraining on vast corpora containing rich behavioral knowledge, offer promise. However, existing fine-tuning approaches tend to overfit to frequent ``anchor'' behaviors, reducing their ability to predict less common ``tail'' behaviors. In this paper, we introduce BehaviorLM, a progressive fine-tuning approach that addresses this issue. In the first stage, LLMs are fine-tuned on anchor behaviors while preserving general behavioral knowledge. In the second stage, fine-tuning uses a balanced subset of all behaviors based on sample difficulty to improve tail behavior predictions without sacrificing anchor performance. Experimental results on two real-world datasets demonstrate that BehaviorLM robustly predicts both anchor and tail behaviors and effectively leverages LLM behavioral knowledge to master tail behavior prediction with few-shot examples.
Abstract:Commuting Origin-destination~(OD) flows, capturing daily population mobility of citizens, are vital for sustainable development across cities around the world. However, it is challenging to obtain the data due to the high cost of travel surveys and privacy concerns. Surprisingly, we find that satellite imagery, publicly available across the globe, contains rich urban semantic signals to support high-quality OD flow generation, with over 98\% expressiveness of traditional multisource hard-to-collect urban sociodemographic, economics, land use, and point of interest data. This inspires us to design a novel data generator, GlODGen, which can generate OD flow data for any cities of interest around the world. Specifically, GlODGen first leverages Vision-Language Geo-Foundation Models to extract urban semantic signals related to human mobility from satellite imagery. These features are then combined with population data to form region-level representations, which are used to generate OD flows via graph diffusion models. Extensive experiments on 4 continents and 6 representative cities show that GlODGen has great generalizability across diverse urban environments on different continents and can generate OD flow data for global cities highly consistent with real-world mobility data. We implement GlODGen as an automated tool, seamlessly integrating data acquisition and curation, urban semantic feature extraction, and OD flow generation together. It has been released at https://github.com/tsinghua-fib-lab/generate-od-pubtools.
Abstract:Over the past year, the development of large language models (LLMs) has brought spatial intelligence into focus, with much attention on vision-based embodied intelligence. However, spatial intelligence spans a broader range of disciplines and scales, from navigation and urban planning to remote sensing and earth science. What are the differences and connections between spatial intelligence across these fields? In this paper, we first review human spatial cognition and its implications for spatial intelligence in LLMs. We then examine spatial memory, knowledge representations, and abstract reasoning in LLMs, highlighting their roles and connections. Finally, we analyze spatial intelligence across scales -- from embodied to urban and global levels -- following a framework that progresses from spatial memory and understanding to spatial reasoning and intelligence. Through this survey, we aim to provide insights into interdisciplinary spatial intelligence research and inspire future studies.
Abstract:The source localization problem in graph information propagation is crucial for managing various network disruptions, from misinformation spread to infrastructure failures. While recent deep generative approaches have shown promise in this domain, their effectiveness is limited by the scarcity of real-world propagation data. This paper introduces SIDSL (\textbf{S}tructure-prior \textbf{I}nformed \textbf{D}iffusion model for \textbf{S}ource \textbf{L}ocalization), a novel framework that addresses three key challenges in limited-data scenarios: unknown propagation patterns, complex topology-propagation relationships, and class imbalance between source and non-source nodes. SIDSL incorporates topology-aware priors through graph label propagation and employs a propagation-enhanced conditional denoiser with a GNN-parameterized label propagation module (GNN-LP). Additionally, we propose a structure-prior biased denoising scheme that initializes from structure-based source estimations rather than random noise, effectively countering class imbalance issues. Experimental results across four real-world datasets demonstrate SIDSL's superior performance, achieving 7.5-13.3% improvements in F1 scores compared to state-of-the-art methods. Notably, when pretrained with simulation data of synthetic patterns, SIDSL maintains robust performance with only 10% of training data, surpassing baselines by more than 18.8%. These results highlight SIDSL's effectiveness in real-world applications where labeled data is scarce.
Abstract:Complex nonlinear system control faces challenges in achieving sample-efficient, reliable performance. While diffusion-based methods have demonstrated advantages over classical and reinforcement learning approaches in long-term control performance, they are limited by sample efficiency. This paper presents SEDC (Sample-Efficient Diffusion-based Control), a novel diffusion-based control framework addressing three core challenges: high-dimensional state-action spaces, nonlinear system dynamics, and the gap between non-optimal training data and near-optimal control solutions. Through three innovations - Decoupled State Diffusion, Dual-Mode Decomposition, and Guided Self-finetuning - SEDC achieves 39.5\%-49.4\% better control accuracy than baselines while using only 10\% of the training samples, as validated across three complex nonlinear dynamic systems. Our approach represents a significant advancement in sample-efficient control of complex nonlinear systems. The implementation of the code can be found at https://anonymous.4open.science/r/DIFOCON-C019.
Abstract:Accurate prediction of mobile traffic, \textit{i.e.,} network traffic from cellular base stations, is crucial for optimizing network performance and supporting urban development. However, the non-stationary nature of mobile traffic, driven by human activity and environmental changes, leads to both regular patterns and abrupt variations. Diffusion models excel in capturing such complex temporal dynamics due to their ability to capture the inherent uncertainties. Most existing approaches prioritize designing novel denoising networks but often neglect the critical role of noise itself, potentially leading to sub-optimal performance. In this paper, we introduce a novel perspective by emphasizing the role of noise in the denoising process. Our analysis reveals that noise fundamentally shapes mobile traffic predictions, exhibiting distinct and consistent patterns. We propose NPDiff, a framework that decomposes noise into \textit{prior} and \textit{residual} components, with the \textit{prior} derived from data dynamics, enhancing the model's ability to capture both regular and abrupt variations. NPDiff can seamlessly integrate with various diffusion-based prediction models, delivering predictions that are effective, efficient, and robust. Extensive experiments demonstrate that it achieves superior performance with an improvement over 30\%, offering a new perspective on leveraging diffusion models in this domain.