Alert button
Picture for Ting Liu

Ting Liu

Alert button

Victor

DAP: Domain-aware Prompt Learning for Vision-and-Language Navigation

Nov 30, 2023
Ting Liu, Yue Hu, Wansen Wu, Youkai Wang, Kai Xu, Quanjun Yin

Following language instructions to navigate in unseen environments is a challenging task for autonomous embodied agents. With strong representation capabilities, pretrained vision-and-language models are widely used in VLN. However, most of them are trained on web-crawled general-purpose datasets, which incurs a considerable domain gap when used for VLN tasks. To address the problem, we propose a novel and model-agnostic domain-aware prompt learning (DAP) framework. For equipping the pretrained models with specific object-level and scene-level cross-modal alignment in VLN tasks, DAP applies a low-cost prompt tuning paradigm to learn soft visual prompts for extracting in-domain image semantics. Specifically, we first generate a set of in-domain image-text pairs with the help of the CLIP model. Then we introduce soft visual prompts in the input space of the visual encoder in a pretrained model. DAP injects in-domain visual knowledge into the visual encoder of the pretrained model in an efficient way. Experimental results on both R2R and REVERIE show the superiority of DAP compared to existing state-of-the-art methods.

* 4 pages. arXiv admin note: substantial text overlap with arXiv:2309.03661 
Viaarxiv icon

A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions

Nov 09, 2023
Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, Ting Liu

The emergence of large language models (LLMs) has marked a significant breakthrough in natural language processing (NLP), leading to remarkable advancements in text understanding and generation. Nevertheless, alongside these strides, LLMs exhibit a critical tendency to produce hallucinations, resulting in content that is inconsistent with real-world facts or user inputs. This phenomenon poses substantial challenges to their practical deployment and raises concerns over the reliability of LLMs in real-world scenarios, which attracts increasing attention to detect and mitigate these hallucinations. In this survey, we aim to provide a thorough and in-depth overview of recent advances in the field of LLM hallucinations. We begin with an innovative taxonomy of LLM hallucinations, then delve into the factors contributing to hallucinations. Subsequently, we present a comprehensive overview of hallucination detection methods and benchmarks. Additionally, representative approaches designed to mitigate hallucinations are introduced accordingly. Finally, we analyze the challenges that highlight the current limitations and formulate open questions, aiming to delineate pathways for future research on hallucinations in LLMs.

* Work in progress; 49 pages 
Viaarxiv icon

On the Opportunities of Green Computing: A Survey

Nov 09, 2023
You Zhou, Xiujing Lin, Xiang Zhang, Maolin Wang, Gangwei Jiang, Huakang Lu, Yupeng Wu, Kai Zhang, Zhe Yang, Kehang Wang, Yongduo Sui, Fengwei Jia, Zuoli Tang, Yao Zhao, Hongxuan Zhang, Tiannuo Yang, Weibo Chen, Yunong Mao, Yi Li, De Bao, Yu Li, Hongrui Liao, Ting Liu, Jingwen Liu, Jinchi Guo, Xiangyu Zhao, Ying WEI, Hong Qian, Qi Liu, Xiang Wang, Wai Kin, Chan, Chenliang Li, Yusen Li, Shiyu Yang, Jining Yan, Chao Mou, Shuai Han, Wuxia Jin, Guannan Zhang, Xiaodong Zeng

Figure 1 for On the Opportunities of Green Computing: A Survey
Figure 2 for On the Opportunities of Green Computing: A Survey
Figure 3 for On the Opportunities of Green Computing: A Survey
Figure 4 for On the Opportunities of Green Computing: A Survey

Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.

* 113 pages, 18 figures 
Viaarxiv icon

Efficient Cloud Pipelines for Neural Radiance Fields

Nov 03, 2023
Derek Jacoby, Donglin Xu, Weder Ribas, Minyi Xu, Ting Liu, Vishwanath Jayaraman, Mengdi Wei, Emma De Blois, Yvonne Coady

Since their introduction in 2020, Neural Radiance Fields (NeRFs) have taken the computer vision community by storm. They provide a multi-view representation of a scene or object that is ideal for eXtended Reality (XR) applications and for creative endeavors such as virtual production, as well as change detection operations in geospatial analytics. The computational cost of these generative AI models is quite high, however, and the construction of cloud pipelines to generate NeRFs is neccesary to realize their potential in client applications. In this paper, we present pipelines on a high performance academic computing cluster and compare it with a pipeline implemented on Microsoft Azure. Along the way, we describe some uses of NeRFs in enabling novel user interaction scenarios.

Viaarxiv icon

Harnessing the Power of Large Language Models for Empathetic Response Generation: Empirical Investigations and Improvements

Oct 08, 2023
Yushan Qian, Wei-Nan Zhang, Ting Liu

Empathetic dialogue is an indispensable part of building harmonious social relationships and contributes to the development of a helpful AI. Previous approaches are mainly based on fine small-scale language models. With the advent of ChatGPT, the application effect of large language models (LLMs) in this field has attracted great attention. This work empirically investigates the performance of LLMs in generating empathetic responses and proposes three improvement methods of semantically similar in-context learning, two-stage interactive generation, and combination with the knowledge base. Extensive experiments show that LLMs can significantly benefit from our proposed methods and is able to achieve state-of-the-art performance in both automatic and human evaluations. Additionally, we explore the possibility of GPT-4 simulating human evaluators.

* the Findings of EMNLP 2023 
Viaarxiv icon

A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

Sep 27, 2023
Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu, Bing Qin, Ting Liu

Figure 1 for A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Figure 2 for A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Figure 3 for A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future
Figure 4 for A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

* Resources are available at https://github.com/zchuz/CoT-Reasoning-Survey 
Viaarxiv icon

Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese

Sep 08, 2023
Haochun Wang, Sendong Zhao, Zewen Qiang, Zijian Li, Nuwa Xi, Yanrui Du, MuZhen Cai, Haoqiang Guo, Yuhan Chen, Haoming Xu, Bing Qin, Ting Liu

Figure 1 for Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese
Figure 2 for Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese
Figure 3 for Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese
Figure 4 for Knowledge-tuning Large Language Models with Structured Medical Knowledge Bases for Reliable Response Generation in Chinese

Large Language Models (LLMs) have demonstrated remarkable success in diverse natural language processing (NLP) tasks in general domains. However, LLMs sometimes generate responses with the hallucination about medical facts due to limited domain knowledge. Such shortcomings pose potential risks in the utilization of LLMs within medical contexts. To address this challenge, we propose knowledge-tuning, which leverages structured medical knowledge bases for the LLMs to grasp domain knowledge efficiently and facilitate reliable response generation. We also release cMedKnowQA, a Chinese medical knowledge question-answering dataset constructed from medical knowledge bases to assess the medical knowledge proficiency of LLMs. Experimental results show that the LLMs which are knowledge-tuned with cMedKnowQA, can exhibit higher levels of accuracy in response generation compared with vanilla instruction-tuning and offer a new reliable way for the domain adaptation of LLMs.

* 11 pages, 5 figures 
Viaarxiv icon

Manifold-based Verbalizer Space Re-embedding for Tuning-free Prompt-based Classification

Sep 08, 2023
Haochun Wang, Sendong Zhao, Chi Liu, Nuwa Xi, Muzhen Cai, Bing Qin, Ting Liu

Figure 1 for Manifold-based Verbalizer Space Re-embedding for Tuning-free Prompt-based Classification
Figure 2 for Manifold-based Verbalizer Space Re-embedding for Tuning-free Prompt-based Classification
Figure 3 for Manifold-based Verbalizer Space Re-embedding for Tuning-free Prompt-based Classification
Figure 4 for Manifold-based Verbalizer Space Re-embedding for Tuning-free Prompt-based Classification

Prompt-based classification adapts tasks to a cloze question format utilizing the [MASK] token and the filled tokens are then mapped to labels through pre-defined verbalizers. Recent studies have explored the use of verbalizer embeddings to reduce labor in this process. However, all existing studies require a tuning process for either the pre-trained models or additional trainable embeddings. Meanwhile, the distance between high-dimensional verbalizer embeddings should not be measured by Euclidean distance due to the potential for non-linear manifolds in the representation space. In this study, we propose a tuning-free manifold-based space re-embedding method called Locally Linear Embedding with Intra-class Neighborhood Constraint (LLE-INC) for verbalizer embeddings, which preserves local properties within the same class as guidance for classification. Experimental results indicate that even without tuning any parameters, our LLE-INC is on par with automated verbalizers with parameter tuning. And with the parameter updating, our approach further enhances prompt-based tuning by up to 3.2%. Furthermore, experiments with the LLaMA-7B&13B indicate that LLE-INC is an efficient tuning-free classification approach for the hyper-scale language models.

* 11 pages, 3 figures 
Viaarxiv icon