Abstract:In real-world streaming recommender systems, user preferences evolve dynamically over time. Existing bandit-based methods treat time merely as a timestamp, neglecting its explicit relationship with user preferences and leading to suboptimal performance. Moreover, online learning methods often suffer from inefficient exploration-exploitation during the early online phase. To address these issues, we propose HyperBandit+, a novel contextual bandit policy that integrates a time-aware hypernetwork to adapt to time-varying user preferences and employs a large language model-assisted warm-start mechanism (LLM Start) to enhance exploration-exploitation efficiency in the early online phase. Specifically, HyperBandit+ leverages a neural network that takes time features as input and generates parameters for estimating time-varying rewards by capturing the correlation between time and user preferences. Additionally, the LLM Start mechanism employs multi-step data augmentation to simulate realistic interaction data for effective offline learning, providing warm-start parameters for the bandit policy in the early online phase. To meet real-time streaming recommendation demands, we adopt low-rank factorization to reduce hypernetwork training complexity. Theoretically, we rigorously establish a sublinear regret upper bound that accounts for both the hypernetwork and the LLM warm-start mechanism. Extensive experiments on real-world datasets demonstrate that HyperBandit+ consistently outperforms state-of-the-art baselines in terms of accumulated rewards.
Abstract:Time series is a pervasive data type across various application domains, rendering the reasonable solving of diverse time series tasks a long-standing goal. Recent advances in large language models (LLMs), especially their reasoning abilities unlocked through reinforcement learning (RL), have opened new opportunities for tackling tasks with long Chain-of-Thought (CoT) reasoning. However, leveraging LLM reasoning for time series remains in its infancy, hindered by the absence of carefully curated time series CoT data for training, limited data efficiency caused by underexplored data scheduling, and the lack of RL algorithms tailored for exploiting such time series CoT data. In this paper, we introduce VeriTime, a framework that tailors LLMs for time series reasoning through data synthesis, data scheduling, and RL training. First, we propose a data synthesis pipeline that constructs a TS-text multimodal dataset with process-verifiable annotations. Second, we design a data scheduling mechanism that arranges training samples according to a principled hierarchy of difficulty and task taxonomy. Third, we develop a two-stage reinforcement finetuning featuring fine-grained, multi-objective rewards that leverage verifiable process-level CoT data. Extensive experiments show that VeriTime substantially boosts LLM performance across diverse time series reasoning tasks. Notably, it enables compact 3B, 4B models to achieve reasoning capabilities on par with or exceeding those of larger proprietary LLMs.
Abstract:Recently, Diffusion Large Language Models (dLLMs) have demonstrated unique efficiency advantages, enabled by their inherently parallel decoding mechanism and flexible generation paradigm. Meanwhile, despite the rapid advancement of Search Agents, their practical deployment is constrained by a fundamental limitation, termed as 1) Latency Challenge: the serial execution of multi-round reasoning, tool calling, and tool response waiting under the ReAct agent paradigm induces severe end-to-end latency. Intuitively, dLLMs can leverage their distinctive strengths to optimize the operational efficiency of agents under the ReAct agent paradigm. Practically, existing dLLM backbones face the 2) Agent Ability Challenge. That is, existing dLLMs exhibit remarkably weak reasoning and tool-calling capabilities, preventing these advantages from being effectively realized in practice. In this paper, we propose DLLM-Searcher, an optimization framework for dLLM-based Search Agents. To solve the Agent Ability Challenge, we design a two-stage post-training pipeline encompassing Agentic Supervised Fine-Tuning (Agentic SFT) and Agentic Variance-Reduced Preference Optimization Agentic VRPO, which enhances the backbone dLLM's information seeking and reasoning capabilities. To mitigate the Latency Challenge, we leverage the flexible generation mechanism of dLLMs and propose a novel agent paradigm termed Parallel-Reasoning and Acting P-ReAct. P-ReAct guides the model to prioritize decoding tool_call instructions, thereby allowing the model to keep thinking while waiting for the tool's return. Experimental results demonstrate that DLLM-Searcher achieves performance comparable to mainstream LLM-based search agents and P-ReAct delivers approximately 15% inference acceleration. Our code is available at https://anonymous.4open.science/r/DLLM-Searcher-553C
Abstract:Image-to-image relighting requires representations that disentangle scene properties from illumination. Recent methods rely on latent intrinsic representations but remain under-constrained and often fail on challenging materials such as metal and glass. A natural hypothesis is that stronger pretrained visual priors should resolve these failures. We find the opposite: features from top-performing semantic encoders often degrade relighting quality, revealing a fundamental trade-off between semantic abstraction and photometric fidelity. We study this trade-off and introduce Augmented Latent Intrinsics (ALI), which balances semantic context and dense photometric structure by fusing features from a pixel-aligned visual encoder into a latent-intrinsic framework, together with a self-supervised refinement strategy to mitigate the scarcity of paired real-world data. Trained only on unlabeled real-world image pairs and paired with a dense, pixel-aligned visual prior, ALI achieves strong improvements in relighting, with the largest gains on complex, specular materials. Project page: https:\\augmented-latent-intrinsics.github.io
Abstract:Flow matching is a scalable generative framework for characterizing continuous normalizing flows with wide-range applications. However, current state-of-the-art methods are not well-suited for modeling dynamical systems, as they construct conditional paths using linear interpolants that may not capture the underlying state evolution, especially when learning higher-order dynamics from irregular sampled observations. Constructing unified paths that satisfy multi-marginal constraints across observations is challenging, since naïve higher-order polynomials tend to be unstable and oscillatory. We introduce SplineFlow, a theoretically grounded flow matching algorithm that jointly models conditional paths across observations via B-spline interpolation. Specifically, SplineFlow exploits the smoothness and stability of B-spline bases to learn the complex underlying dynamics in a structured manner while ensuring the multi-marginal requirements are met. Comprehensive experiments across various deterministic and stochastic dynamical systems of varying complexity, as well as on cellular trajectory inference tasks, demonstrate the strong improvement of SplineFlow over existing baselines. Our code is available at: https://github.com/santanurathod/SplineFlow.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.
Abstract:In-context learning (ICL) has proven highly effective across diverse large language model (LLM) tasks. However, its potential for enhancing tasks that demand step-by-step logical deduction, such as mathematical reasoning, remains underexplored. A core limitation of existing ICL approaches is their static use of demonstrations: examples are pre-selected before inference and remain fixed, failing to adapt to the dynamic confusion points that often arise during multi-step reasoning such as ambiguous calculations or logical gaps. These unresolved confusion points can lead to cascading errors that degrade final accuracy. To tackle this issue, we propose Process In-Context Learning (PICL), a dynamic demonstration integration framework designed to boost mathematical reasoning by responding to real-time inference needs. PICL operates in two stages: 1)~it identifies potential confusion points by analyzing semantics and entropy in the reasoning process and summarizes their core characteristics; 2)~upon encountering these points, it retrieves relevant demonstrations from the demonstration pool that match the confusion context and inserts them directly into the ongoing reasoning process to guide subsequent steps. Experiments show that PICL outperforms baseline methods by mitigating mid-inference confusion, highlighting the value of adaptive demonstration insertion in complex mathematical reasoning.
Abstract:Personalized large language models (LLMs) adapt model behavior to individual users to enhance user satisfaction, yet personalization can inadvertently distort factual reasoning. We show that when personalized LLMs face factual queries, there exists a phenomenon where the model generates answers aligned with a user's prior history rather than the objective truth, resulting in personalization-induced hallucinations that degrade factual reliability and may propagate incorrect beliefs, due to representational entanglement between personalization and factual representations. To address this issue, we propose Factuality-Preserving Personalized Steering (FPPS), a lightweight inference-time approach that mitigates personalization-induced factual distortions while preserving personalized behavior. We further introduce PFQABench, the first benchmark designed to jointly evaluate factual and personalized question answering under personalization. Experiments across multiple LLM backbones and personalization methods show that FPPS substantially improves factual accuracy while maintaining personalized performance.
Abstract:Large language models (LLMs) demonstrate remarkable capabilities in natural language understanding and generation. Despite being trained on large-scale, high-quality data, LLMs still fail to outperform traditional static analysis tools in specialized domains like smart contract vulnerability detection. To address this issue, this paper proposes a post-training algorithm based on atomic task decomposition and fusion. This algorithm aims to achieve combinatorial generalization under limited data by decomposing complex reasoning tasks. Specifically, we decompose the reentrancy vulnerability detection task into four linearly independent atomic tasks: identifying external calls, identifying state updates, identifying data dependencies between external calls and state updates, and determining their data flow order. These tasks form the core components of our approach. By training on synthetic datasets, we generate three compiler-verified datasets. We then employ the Slither tool to extract structural information from the control flow graph and data flow graph, which is used to fine-tune the LLM's adapter. Experimental results demonstrate that low-rank normalization fusion with the LoRA adapter improves the LLM's reentrancy vulnerability detection accuracy to 98.2%, surpassing state-of-the-art methods. On 31 real-world contracts, the algorithm achieves a 20% higher recall than traditional analysis tools.
Abstract:Query correction is a critical entry point in modern search pipelines, demanding high accuracy strictly within real-time latency constraints. Chain-of-Thought (CoT) reasoning improves accuracy but incurs prohibitive latency for real-time query correction. A potential solution is to output an answer before reasoning to reduce latency; however, under autoregressive decoding, the early answer is independent of subsequent reasoning, preventing the model from leveraging its reasoning capability to improve accuracy. To address this issue, we propose Sandwich Reasoning (SandwichR), a novel approach that explicitly aligns a fast initial answer with post-hoc reasoning, enabling low-latency query correction without sacrificing reasoning-aware accuracy. SandwichR follows an Answer-Reasoning-Answer paradigm, producing an initial correction, an explicit reasoning process, and a final refined correction. To align the initial answer with post-reasoning insights, we design a consistency-aware reinforcement learning (RL) strategy: a dedicated consistency reward enforces alignment between the initial and final corrections, while margin-based rejection sampling prioritizes borderline samples where reasoning drives the most impactful corrective gains. Additionally, we construct a high-quality query correction dataset, addressing the lack of specialized benchmarks for complex query correction. Experimental results demonstrate that SandwichR achieves SOTA accuracy comparable to standard CoT while delivering a 40-70% latency reduction, resolving the latency-accuracy trade-off in online search.