Abstract:Explorations in fine-tuning Vision-Language Models (VLMs), such as Low-Rank Adaptation (LoRA) from Parameter Efficient Fine-Tuning (PEFT), have made impressive progress. However, most approaches rely on explicit weight updates, overlooking the extensive representational structures already encoded in pre-trained models that remain underutilized. Recent works have demonstrated that Mask Fine-Tuning (MFT) can be a powerful and efficient post-training paradigm for language models. Instead of updating weights, MFT assigns learnable gating scores to each weight, allowing the model to reorganize its internal subnetworks for downstream task adaptation. In this paper, we rethink fine-tuning for VLMs from a structural reparameterization perspective grounded in MFT. We apply MFT to the language and projector components of VLMs with different language backbones and compare against strong PEFT baselines. Experiments show that MFT consistently surpasses LoRA variants and even full fine-tuning, achieving high performance without altering the frozen backbone. Our findings reveal that effective adaptation can emerge not only from updating weights but also from reestablishing connections among the model's existing knowledge. Code available at: https://github.com/Ming-K9/MFT-VLM
Abstract:Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://animotionlab.github.io/SWIT4D/
Abstract:Motion capture now underpins content creation far beyond digital humans, yet most existing pipelines remain species- or template-specific. We formalize this gap as Category-Agnostic Motion Capture (CAMoCap): given a monocular video and an arbitrary rigged 3D asset as a prompt, the goal is to reconstruct a rotation-based animation such as BVH that directly drives the specific asset. We present MoCapAnything, a reference-guided, factorized framework that first predicts 3D joint trajectories and then recovers asset-specific rotations via constraint-aware inverse kinematics. The system contains three learnable modules and a lightweight IK stage: (1) a Reference Prompt Encoder that extracts per-joint queries from the asset's skeleton, mesh, and rendered images; (2) a Video Feature Extractor that computes dense visual descriptors and reconstructs a coarse 4D deforming mesh to bridge the gap between video and joint space; and (3) a Unified Motion Decoder that fuses these cues to produce temporally coherent trajectories. We also curate Truebones Zoo with 1038 motion clips, each providing a standardized skeleton-mesh-render triad. Experiments on both in-domain benchmarks and in-the-wild videos show that MoCapAnything delivers high-quality skeletal animations and exhibits meaningful cross-species retargeting across heterogeneous rigs, enabling scalable, prompt-driven 3D motion capture for arbitrary assets. Project page: https://animotionlab.github.io/MoCapAnything/
Abstract:Visual speech recognition is a technique to identify spoken content in silent speech videos, which has raised significant attention in recent years. Advancements in data-driven deep learning methods have significantly improved both the speed and accuracy of recognition. However, these deep learning methods can be effected by visual disturbances, such as lightning conditions, skin texture and other user-specific features. Data-driven approaches could reduce the performance degradation caused by these visual disturbances using models pretrained on large-scale datasets. But these methods often require large amounts of training data and computational resources, making them costly. To reduce the influence of user-specific features and enhance performance with limited data, this paper proposed a landmark guided visual feature extractor. Facial landmarks are used as auxiliary information to aid in training the visual feature extractor. A spatio-temporal multi-graph convolutional network is designed to fully exploit the spatial locations and spatio-temporal features of facial landmarks. Additionally, a multi-level lip dynamic fusion framework is introduced to combine the spatio-temporal features of the landmarks with the visual features extracted from the raw video frames. Experimental results show that this approach performs well with limited data and also improves the model's accuracy on unseen speakers.
Abstract:Recent advances in interactive technologies have highlighted the prominence of audio signals for semantic encoding. This paper explores a new task, where audio signals are used as conditioning inputs to generate motions that align with the semantics of the audio. Unlike text-based interactions, audio provides a more natural and intuitive communication method. However, existing methods typically focus on matching motions with music or speech rhythms, which often results in a weak connection between the semantics of the audio and generated motions. We propose an end-to-end framework using a masked generative transformer, enhanced by a memory-retrieval attention module to handle sparse and lengthy audio inputs. Additionally, we enrich existing datasets by converting descriptions into conversational style and generating corresponding audio with varied speaker identities. Experiments demonstrate the effectiveness and efficiency of the proposed framework, demonstrating that audio instructions can convey semantics similar to text while providing more practical and user-friendly interactions.
Abstract:The model is usually kept integral in the mainstream large language model (LLM) fine-tuning protocols. No works have questioned whether maintaining the integrity of the model is indispensable for performance. In this work, we introduce Mask Fine-Tuning (MFT), a brand-new LLM fine-tuning paradigm to show that properly breaking the integrity of the model can surprisingly lead to improved performance. Specifically, MFT learns a set of binary masks supervised by the typical LLM fine-tuning objective. Extensive experiments show that MFT gains a consistent performance boost across various domains and backbones (e.g., 1.95%/1.88% average gain in coding with LLaMA2-7B/3.1-8B). Detailed procedures are provided to study the proposed MFT from different hyperparameter perspectives for better insight. In particular, MFT naturally updates the current LLM training protocol by deploying it on a complete well-trained model. This study extends the functionality of mask learning from its conventional network pruning context for model compression to a more general scope.
Abstract:Expressive human pose and shape estimation (EHPS) unifies body, hands, and face motion capture with numerous applications. Despite encouraging progress, current state-of-the-art methods focus on training innovative architectural designs on confined datasets. In this work, we investigate the impact of scaling up EHPS towards a family of generalist foundation models. 1) For data scaling, we perform a systematic investigation on 40 EHPS datasets, encompassing a wide range of scenarios that a model trained on any single dataset cannot handle. More importantly, capitalizing on insights obtained from the extensive benchmarking process, we optimize our training scheme and select datasets that lead to a significant leap in EHPS capabilities. Ultimately, we achieve diminishing returns at 10M training instances from diverse data sources. 2) For model scaling, we take advantage of vision transformers (up to ViT-Huge as the backbone) to study the scaling law of model sizes in EHPS. To exclude the influence of algorithmic design, we base our experiments on two minimalist architectures: SMPLer-X, which consists of an intermediate step for hand and face localization, and SMPLest-X, an even simpler version that reduces the network to its bare essentials and highlights significant advances in the capture of articulated hands. With big data and the large model, the foundation models exhibit strong performance across diverse test benchmarks and excellent transferability to even unseen environments. Moreover, our finetuning strategy turns the generalist into specialist models, allowing them to achieve further performance boosts. Notably, our foundation models consistently deliver state-of-the-art results on seven benchmarks such as AGORA, UBody, EgoBody, and our proposed SynHand dataset for comprehensive hand evaluation. (Code is available at: https://github.com/wqyin/SMPLest-X).




Abstract:While motion generation has made substantial progress, its practical application remains constrained by dataset diversity and scale, limiting its ability to handle out-of-distribution scenarios. To address this, we propose a simple and effective baseline, RMD, which enhances the generalization of motion generation through retrieval-augmented techniques. Unlike previous retrieval-based methods, RMD requires no additional training and offers three key advantages: (1) the external retrieval database can be flexibly replaced; (2) body parts from the motion database can be reused, with an LLM facilitating splitting and recombination; and (3) a pre-trained motion diffusion model serves as a prior to improve the quality of motions obtained through retrieval and direct combination. Without any training, RMD achieves state-of-the-art performance, with notable advantages on out-of-distribution data.




Abstract:Ptychography is a computational method of microscopy that recovers high-resolution transmission images of samples from a series of diffraction patterns. While conventional phase retrieval algorithms can iteratively recover the images, they require oversampled diffraction patterns, incur significant computational costs, and struggle to recover the absolute phase of the sample's transmission function. Deep learning algorithms for ptychography are a promising approach to resolving the limitations of iterative algorithms. We present PtychoFormer, a hierarchical transformer-based model for data-driven single-shot ptychographic phase retrieval. PtychoFormer processes subsets of diffraction patterns, generating local inferences that are seamlessly stitched together to produce a high-quality reconstruction. Our model exhibits tolerance to sparsely scanned diffraction patterns and achieves up to 3600 times faster imaging speed than the extended ptychographic iterative engine (ePIE). We also propose the extended-PtychoFormer (ePF), a hybrid approach that combines the benefits of PtychoFormer with the ePIE. ePF minimizes global phase shifts and significantly enhances reconstruction quality, achieving state-of-the-art phase retrieval in ptychography.




Abstract:We present Flow Matching for Reaction Coordinates (FMRC), a novel deep learning algorithm designed to identify optimal reaction coordinates (RC) in biomolecular reversible dynamics. FMRC is based on the mathematical principles of lumpability and decomposability, which we reformulate into a conditional probability framework for efficient data-driven optimization using deep generative models. While FMRC does not explicitly learn the well-established transfer operator or its eigenfunctions, it can effectively encode the dynamics of leading eigenfunctions of the system transfer operator into its low-dimensional RC space. We further quantitatively compare its performance with several state-of-the-art algorithms by evaluating the quality of Markov State Models (MSM) constructed in their respective RC spaces, demonstrating the superiority of FMRC in three increasingly complex biomolecular systems. Finally, we discuss its potential applications in downstream applications such as enhanced sampling methods and MSM construction.