Abstract:Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multiview images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, which exhibit better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
Abstract:Exposure correction is a fundamental problem in computer vision and image processing. Recently, frequency domain-based methods have achieved impressive improvement, yet they still struggle with complex real-world scenarios under extreme exposure conditions. This is due to the local convolutional receptive fields failing to model long-range dependencies in the spectrum, and the non-generative learning paradigm being inadequate for retrieving lost details from severely degraded regions. In this paper, we propose Omnidirectional Spectral Mamba (OSMamba), a novel exposure correction network that incorporates the advantages of state space models and generative diffusion models to address these limitations. Specifically, OSMamba introduces an omnidirectional spectral scanning mechanism that adapts Mamba to the frequency domain to capture comprehensive long-range dependencies in both the amplitude and phase spectra of deep image features, hence enhancing illumination correction and structure recovery. Furthermore, we develop a dual-domain prior generator that learns from well-exposed images to generate a degradation-free diffusion prior containing correct information about severely under- and over-exposed regions for better detail restoration. Extensive experiments on multiple-exposure and mixed-exposure datasets demonstrate that the proposed OSMamba achieves state-of-the-art performance both quantitatively and qualitatively.
Abstract:Novel-view synthesis (NVS) approaches play a critical role in vast scene reconstruction. However, these methods rely heavily on dense image inputs and prolonged training times, making them unsuitable where computational resources are limited. Additionally, few-shot methods often struggle with poor reconstruction quality in vast environments. This paper presents DGTR, a novel distributed framework for efficient Gaussian reconstruction for sparse-view vast scenes. Our approach divides the scene into regions, processed independently by drones with sparse image inputs. Using a feed-forward Gaussian model, we predict high-quality Gaussian primitives, followed by a global alignment algorithm to ensure geometric consistency. Synthetic views and depth priors are incorporated to further enhance training, while a distillation-based model aggregation mechanism enables efficient reconstruction. Our method achieves high-quality large-scale scene reconstruction and novel-view synthesis in significantly reduced training times, outperforming existing approaches in both speed and scalability. We demonstrate the effectiveness of our framework on vast aerial scenes, achieving high-quality results within minutes. Code will released on our [https://3d-aigc.github.io/DGTR].
Abstract:Domain generalization on graphs aims to develop models with robust generalization capabilities, ensuring effective performance on the testing set despite disparities between testing and training distributions. However, existing methods often rely on static encoders directly applied to the target domain, constraining its flexible adaptability. In contrast to conventional methodologies, which concentrate on developing specific generalized models, our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning with structure learning and semantic identification. Initially, it introduces a generalized structure learner to mitigate the adverse effects of task-unrelated edges, enhancing the comprehensiveness of representations learned by Graph Neural Networks (GNNs) while capturing shared structural information across domains. Subsequently, a representation learner is designed to disentangle domain-invariant semantic and domain-specific variation information in node embedding by leveraging causal reasoning for semantic identification, further enhancing generalization. In the context of meta-learning, meta-parameters for both learners are optimized to facilitate knowledge transfer and enable effective adaptation to graphs through fine-tuning within the target domains, where target graphs are inaccessible during training. Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.
Abstract:Open-set domain generalization addresses a real-world challenge: training a model to generalize across unseen domains (domain generalization) while also detecting samples from unknown classes not encountered during training (open-set recognition). However, most existing approaches tackle these issues separately, limiting their practical applicability. To overcome this limitation, we propose a unified framework for open-set domain generalization by introducing Feature-space Semantic Invariance (FSI). FSI maintains semantic consistency across different domains within the feature space, enabling more accurate detection of OOD instances in unseen domains. Additionally, we adopt a generative model to produce synthetic data with novel domain styles or class labels, enhancing model robustness. Initial experiments show that our method improves AUROC by 9.1% to 18.9% on ColoredMNIST, while also significantly increasing in-distribution classification accuracy.
Abstract:We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 2,400 expert-annotated examples, divided into three subsets: information extraction, numerical reasoning, and knowledge-intensive reasoning, each addressing common scenarios encountered in real-world financial contexts. We assess a broad spectrum of LLMs under long-context and RAG settings. Our results show that even the current best-performing system, GPT-4o, still lags behind human experts. We further provide in-depth analysis on long-context and RAG setting, Chain-of-Thought reasoning, and model reasoning errors, offering insights to drive future advancements. We believe that FinDVer can serve as a valuable benchmark for evaluating LLMs in claim verification over complex, expert-domain documents.
Abstract:The emerging in-context learning (ICL) ability of large language models (LLMs) has prompted their use for predictive tasks in various domains with different types of data facilitated by serialization methods. However, with increasing applications in high-stakes domains, it has been shown that LLMs can inherit social bias and discrimination from their pre-training data. In this work, we investigate this inherent bias in LLMs during in-context learning with tabular data. We focus on an optimal demonstration selection approach that utilizes latent concept variables for resource-efficient task adaptation. We design data augmentation strategies that reduce correlation between predictive outcomes and sensitive variables helping to promote fairness during latent concept learning. We utilize the learned concept and select demonstrations from a training dataset to obtain fair predictions during inference while maintaining model utility. The latent concept variable is learned using a smaller internal LLM and the selected demonstrations can be used for inference with larger external LLMs. We empirically verify that the fair latent variable approach improves fairness results on tabular datasets compared to multiple heuristic demonstration selection methods.
Abstract:Generalizing to out-of-distribution data while being aware of model fairness is a significant and challenging problem in meta-learning. The goal of this problem is to find a set of fairness-aware invariant parameters of classifier that is trained using data drawn from a family of related training domains with distribution shift on non-sensitive features as well as different levels of dependence between model predictions and sensitive features so that the classifier can achieve good generalization performance on unknown but distinct test domains. To tackle this challenge, existing state-of-the-art methods either address the domain generalization problem but completely ignore learning with fairness or solely specify shifted domains with various fairness levels. This paper introduces an approach to fairness-aware meta-learning that significantly enhances domain generalization capabilities. Our framework, Fairness-Enhanced Meta-Learning for Domain Generalization (FEED), disentangles latent data representations into content, style, and sensitive vectors. This disentanglement facilitates the robust generalization of machine learning models across diverse domains while adhering to fairness constraints. Unlike traditional methods that focus primarily on domain invariance or sensitivity to shifts, our model integrates a fairness-aware invariance criterion directly into the meta-learning process. This integration ensures that the learned parameters uphold fairness consistently, even when domain characteristics vary widely. We validate our approach through extensive experiments across multiple benchmarks, demonstrating not only superior performance in maintaining high accuracy and fairness but also significant improvements over existing state-of-the-art methods in domain generalization tasks.
Abstract:Real-world machine learning applications often face simultaneous covariate and semantic shifts, challenging traditional domain generalization and out-of-distribution (OOD) detection methods. We introduce Meta-learned Across Domain Out-of-distribution Detection (MADOD), a novel framework designed to address both shifts concurrently. MADOD leverages meta-learning and G-invariance to enhance model generalizability and OOD detection in unseen domains. Our key innovation lies in task construction: we randomly designate in-distribution classes as pseudo-OODs within each meta-learning task, simulating OOD scenarios using existing data. This approach, combined with energy-based regularization, enables the learning of robust, domain-invariant features while calibrating decision boundaries for effective OOD detection. Operating in a test domain-agnostic setting, MADOD eliminates the need for adaptation during inference, making it suitable for scenarios where test data is unavailable. Extensive experiments on real-world and synthetic datasets demonstrate MADOD's superior performance in semantic OOD detection across unseen domains, achieving an AUPR improvement of 8.48% to 20.81%, while maintaining competitive in-distribution classification accuracy, representing a significant advancement in handling both covariate and semantic shifts.
Abstract:3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS). However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization capacity for broader pose variations. In this paper, we alleviate the overfitting problem by introducing a self-ensembling Gaussian Splatting (SE-GS) approach. We present two Gaussian Splatting models named the $\mathbf{\Sigma}$-model and the $\mathbf{\Delta}$-model. The $\mathbf{\Sigma}$-model serves as the primary model that generates novel-view images during inference. At the training stage, the $\mathbf{\Sigma}$-model is guided away from specific local optima by an uncertainty-aware perturbing strategy. We dynamically perturb the $\mathbf{\Delta}$-model based on the uncertainties of novel-view renderings across different training steps, resulting in diverse temporal models sampled from the Gaussian parameter space without additional training costs. The geometry of the $\mathbf{\Sigma}$-model is regularized by penalizing discrepancies between the $\mathbf{\Sigma}$-model and the temporal samples. Therefore, our SE-GS conducts an effective and efficient regularization across a large number of Gaussian Splatting models, resulting in a robust ensemble, the $\mathbf{\Sigma}$-model. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets show that our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods. The code is released at https://github.com/sailor-z/SE-GS.