Alert button
Picture for Chen Zhao

Chen Zhao

Alert button

Ego-Exo4D: Understanding Skilled Human Activity from First- and Third-Person Perspectives

Nov 30, 2023
Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, Eugene Byrne, Zach Chavis, Joya Chen, Feng Cheng, Fu-Jen Chu, Sean Crane, Avijit Dasgupta, Jing Dong, Maria Escobar, Cristhian Forigua, Abrham Gebreselasie, Sanjay Haresh, Jing Huang, Md Mohaiminul Islam, Suyog Jain, Rawal Khirodkar, Devansh Kukreja, Kevin J Liang, Jia-Wei Liu, Sagnik Majumder, Yongsen Mao, Miguel Martin, Effrosyni Mavroudi, Tushar Nagarajan, Francesco Ragusa, Santhosh Kumar Ramakrishnan, Luigi Seminara, Arjun Somayazulu, Yale Song, Shan Su, Zihui Xue, Edward Zhang, Jinxu Zhang, Angela Castillo, Changan Chen, Xinzhu Fu, Ryosuke Furuta, Cristina Gonzalez, Prince Gupta, Jiabo Hu, Yifei Huang, Yiming Huang, Weslie Khoo, Anush Kumar, Robert Kuo, Sach Lakhavani, Miao Liu, Mi Luo, Zhengyi Luo, Brighid Meredith, Austin Miller, Oluwatumininu Oguntola, Xiaqing Pan, Penny Peng, Shraman Pramanick, Merey Ramazanova, Fiona Ryan, Wei Shan, Kiran Somasundaram, Chenan Song, Audrey Southerland, Masatoshi Tateno, Huiyu Wang, Yuchen Wang, Takuma Yagi, Mingfei Yan, Xitong Yang, Zecheng Yu, Shengxin Cindy Zha, Chen Zhao, Ziwei Zhao, Zhifan Zhu, Jeff Zhuo, Pablo Arbelaez, Gedas Bertasius, David Crandall, Dima Damen, Jakob Engel, Giovanni Maria Farinella, Antonino Furnari, Bernard Ghanem, Judy Hoffman, C. V. Jawahar, Richard Newcombe, Hyun Soo Park, James M. Rehg, Yoichi Sato, Manolis Savva, Jianbo Shi, Mike Zheng Shou, Michael Wray

We present Ego-Exo4D, a diverse, large-scale multimodal multiview video dataset and benchmark challenge. Ego-Exo4D centers around simultaneously-captured egocentric and exocentric video of skilled human activities (e.g., sports, music, dance, bike repair). More than 800 participants from 13 cities worldwide performed these activities in 131 different natural scene contexts, yielding long-form captures from 1 to 42 minutes each and 1,422 hours of video combined. The multimodal nature of the dataset is unprecedented: the video is accompanied by multichannel audio, eye gaze, 3D point clouds, camera poses, IMU, and multiple paired language descriptions -- including a novel "expert commentary" done by coaches and teachers and tailored to the skilled-activity domain. To push the frontier of first-person video understanding of skilled human activity, we also present a suite of benchmark tasks and their annotations, including fine-grained activity understanding, proficiency estimation, cross-view translation, and 3D hand/body pose. All resources will be open sourced to fuel new research in the community.

Viaarxiv icon

End-to-End Temporal Action Detection with 1B Parameters Across 1000 Frames

Nov 28, 2023
Shuming Liu, Chen-Lin Zhang, Chen Zhao, Bernard Ghanem

Recently, temporal action detection (TAD) has seen significant performance improvement with end-to-end training. However, due to the memory bottleneck, only models with limited scales and limited data volumes can afford end-to-end training, which inevitably restricts TAD performance. In this paper, we reduce the memory consumption for end-to-end training, and manage to scale up the TAD backbone to 1 billion parameters and the input video to 1,536 frames, leading to significant detection performance. The key to our approach lies in our proposed temporal-informative adapter (TIA), which is a novel lightweight module that reduces training memory. Using TIA, we free the humongous backbone from learning to adapt to the TAD task by only updating the parameters in TIA. TIA also leads to better TAD representation by temporally aggregating context from adjacent frames throughout the backbone. We evaluate our model across four representative datasets. Owing to our efficient design, we are able to train end-to-end on VideoMAEv2-giant and achieve 75.4% mAP on THUMOS14, being the first end-to-end model to outperform the best feature-based methods.

Viaarxiv icon

Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration

Nov 28, 2023
Chen Zhao, Weiling Cai, Chenyu Dong, Chengwei Hu

Underwater images are subject to intricate and diverse degradation, inevitably affecting the effectiveness of underwater visual tasks. However, most approaches primarily operate in the raw pixel space of images, which limits the exploration of the frequency characteristics of underwater images, leading to an inadequate utilization of deep models' representational capabilities in producing high-quality images. In this paper, we introduce a novel Underwater Image Enhancement (UIE) framework, named WF-Diff, designed to fully leverage the characteristics of frequency domain information and diffusion models. WF-Diff consists of two detachable networks: Wavelet-based Fourier information interaction network (WFI2-net) and Frequency Residual Diffusion Adjustment Module (FRDAM). With our full exploration of the frequency domain information, WFI2-net aims to achieve preliminary enhancement of frequency information in the wavelet space. Our proposed FRDAM can further refine the high- and low-frequency information of the initial enhanced images, which can be viewed as a plug-and-play universal module to adjust the detail of the underwater images. With the above techniques, our algorithm can show SOTA performance on real-world underwater image datasets, and achieves competitive performance in visual quality.

Viaarxiv icon

Fairness-Aware Domain Generalization under Covariate and Dependence Shifts

Nov 23, 2023
Chen Zhao, Kai Jiang, Xintao Wu, Haoliang Wang, Latifur Khan, Christan Grant, Feng Chen

Achieving the generalization of an invariant classifier from source domains to shifted target domains while simultaneously considering model fairness is a substantial and complex challenge in machine learning. Existing domain generalization research typically attributes domain shifts to concept shift, which relates to alterations in class labels, and covariate shift, which pertains to variations in data styles. In this paper, by introducing another form of distribution shift, known as dependence shift, which involves variations in fair dependence patterns across domains, we propose a novel domain generalization approach that addresses domain shifts by considering both covariate and dependence shifts. We assert the existence of an underlying transformation model can transform data from one domain to another. By generating data in synthetic domains through the model, a fairness-aware invariant classifier is learned that enforces both model accuracy and fairness in unseen domains. Extensive empirical studies on four benchmark datasets demonstrate that our approach surpasses state-of-the-art methods.

Viaarxiv icon

KnowledgeMath: Knowledge-Intensive Math Word Problem Solving in Finance Domains

Nov 16, 2023
Yilun Zhao, Hongjun Liu, Yitao Long, Rui Zhang, Chen Zhao, Arman Cohan

We introduce KnowledgeMath, a novel benchmark designed to evaluate LLMs' capabilities in applying financial knowledge to solve complex math word problems. Compared to prior works, this study features three core advancements. First, KnowledgeMath includes 1,259 problems with a hybrid of textual and tabular content and require college-level knowledge in the finance domain for effective resolution. Second, we provide expert-annotated, detailed solution references in Python program format, ensuring a high-quality benchmark for LLM assessment. Finally, we evaluate a wide spectrum of 14 LLMs with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. The current best-performing system (i.e., GPT-4 with Program-of-Thoughts) achieves only 45.4% accuracy, leaving substantial room for improvement. While knowledge-augmented LLMs can improve the performance (e.g., from 23.9% to 32.0% for GPT-3.5), it is still significantly lower the estimated human expert performance of 94%. We believe that KnowledgeMath can facilitate future research on domain-specific knowledge retrieval and augmentation into the math word problem-solving process. We will release the benchmark and code at

* work in progress 
Viaarxiv icon

A Robust Deep Learning Method with Uncertainty Estimation for the Pathological Classification of Renal Cell Carcinoma based on CT Images

Nov 12, 2023
Ni Yao, Hang Hu, Kaicong Chen, Chen Zhao, Yuan Guo, Boya Li, Jiaofen Nan, Yanting Li, Chuang Han, Fubao Zhu, Weihua Zhou, Li Tian

Objectives To develop and validate a deep learning-based diagnostic model incorporating uncertainty estimation so as to facilitate radiologists in the preoperative differentiation of the pathological subtypes of renal cell carcinoma (RCC) based on CT images. Methods Data from 668 consecutive patients, pathologically proven RCC, were retrospectively collected from Center 1. By using five-fold cross-validation, a deep learning model incorporating uncertainty estimation was developed to classify RCC subtypes into clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC). An external validation set of 78 patients from Center 2 further evaluated the model's performance. Results In the five-fold cross-validation, the model's area under the receiver operating characteristic curve (AUC) for the classification of ccRCC, pRCC, and chRCC was 0.868 (95% CI: 0.826-0.923), 0.846 (95% CI: 0.812-0.886), and 0.839 (95% CI: 0.802-0.88), respectively. In the external validation set, the AUCs were 0.856 (95% CI: 0.838-0.882), 0.787 (95% CI: 0.757-0.818), and 0.793 (95% CI: 0.758-0.831) for ccRCC, pRCC, and chRCC, respectively. Conclusions The developed deep learning model demonstrated robust performance in predicting the pathological subtypes of RCC, while the incorporated uncertainty emphasized the importance of understanding model confidence, which is crucial for assisting clinical decision-making for patients with renal tumors. Clinical relevance statement Our deep learning approach, integrated with uncertainty estimation, offers clinicians a dual advantage: accurate RCC subtype predictions complemented by diagnostic confidence references, promoting informed decision-making for patients with RCC.

* 16 pages, 6 figures 
Viaarxiv icon

Retrieval-Augmented Chain-of-Thought in Semi-structured Domains

Oct 22, 2023
Vaibhav Mavi, Abulhair Saparov, Chen Zhao

Applying existing question answering (QA) systems to specialized domains like law and finance presents challenges that necessitate domain expertise. Although large language models (LLMs) have shown impressive language comprehension and in-context learning capabilities, their inability to handle very long inputs/contexts is well known. Tasks specific to these domains need significant background knowledge, leading to contexts that can often exceed the maximum length that existing LLMs can process. This study explores leveraging the semi-structured nature of legal and financial data to efficiently retrieve relevant context, enabling the use of LLMs for domain-specialized QA. The resulting system outperforms contemporary models and also provides useful explanations for the answers, encouraging the integration of LLMs into legal and financial NLP systems for future research.

* to appear in NLLP 2023 
Viaarxiv icon

Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong

Oct 19, 2023
Chenglei Si, Navita Goyal, Sherry Tongshuang Wu, Chen Zhao, Shi Feng, Hal Daumé III, Jordan Boyd-Graber

Large Language Models (LLMs) are increasingly used for accessing information on the web. Their truthfulness and factuality are thus of great interest. To help users make the right decisions about the information they're getting, LLMs should not only provide but also help users fact-check information. In this paper, we conduct experiments with 80 crowdworkers in total to compare language models with search engines (information retrieval systems) at facilitating fact-checking by human users. We prompt LLMs to validate a given claim and provide corresponding explanations. Users reading LLM explanations are significantly more efficient than using search engines with similar accuracy. However, they tend to over-rely the LLMs when the explanation is wrong. To reduce over-reliance on LLMs, we ask LLMs to provide contrastive information - explain both why the claim is true and false, and then we present both sides of the explanation to users. This contrastive explanation mitigates users' over-reliance on LLMs, but cannot significantly outperform search engines. However, showing both search engine results and LLM explanations offers no complementary benefits as compared to search engines alone. Taken together, natural language explanations by LLMs may not be a reliable replacement for reading the retrieved passages yet, especially in high-stakes settings where over-relying on wrong AI explanations could lead to critical consequences.

* preprint 
Viaarxiv icon

Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics

Oct 12, 2023
Chen Zhao, Kuan-Jui Su, Chong Wu, Xuewei Cao, Qiuying Sha, Wu Li, Zhe Luo, Tian Qin, Chuan Qiu, Lan Juan Zhao, Anqi Liu, Lindong Jiang, Xiao Zhang, Hui Shen, Weihua Zhou, Hong-Wen Deng

Figure 1 for Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics
Figure 2 for Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics
Figure 3 for Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics

Background: Missing data is a common challenge in mass spectrometry-based metabolomics, which can lead to biased and incomplete analyses. The integration of whole-genome sequencing (WGS) data with metabolomics data has emerged as a promising approach to enhance the accuracy of data imputation in metabolomics studies. Method: In this study, we propose a novel method that leverages the information from WGS data and reference metabolites to impute unknown metabolites. Our approach utilizes a multi-view variational autoencoder to jointly model the burden score, polygenetic risk score (PGS), and linkage disequilibrium (LD) pruned single nucleotide polymorphisms (SNPs) for feature extraction and missing metabolomics data imputation. By learning the latent representations of both omics data, our method can effectively impute missing metabolomics values based on genomic information. Results: We evaluate the performance of our method on empirical metabolomics datasets with missing values and demonstrate its superiority compared to conventional imputation techniques. Using 35 template metabolites derived burden scores, PGS and LD-pruned SNPs, the proposed methods achieved r2-scores > 0.01 for 71.55% of metabolites. Conclusion: The integration of WGS data in metabolomics imputation not only improves data completeness but also enhances downstream analyses, paving the way for more comprehensive and accurate investigations of metabolic pathways and disease associations. Our findings offer valuable insights into the potential benefits of utilizing WGS data for metabolomics data imputation and underscore the importance of leveraging multi-modal data integration in precision medicine research.

* 19 pages, 3 figures 
Viaarxiv icon