University of California, Merced, USA
Abstract:Structured sparsity has emerged as a popular model pruning technique, widely adopted in various architectures, including CNNs, Transformer models, and especially large language models (LLMs) in recent years. A promising direction to further improve post-pruning performance is weight permutation, which reorders model weights into patterns more amenable to pruning. However, the exponential growth of the permutation search space with the scale of Transformer architectures forces most methods to rely on greedy or heuristic algorithms, limiting the effectiveness of reordering. In this work, we propose a novel end-to-end learnable permutation framework. Our method introduces a learnable permutation cost matrix to quantify the cost of swapping any two input channels of a given weight matrix, a differentiable bipartite matching solver to obtain the optimal binary permutation matrix given a cost matrix, and a sparsity optimization loss function to directly optimize the permutation operator. We extensively validate our approach on vision and language Transformers, demonstrating that our method achieves state-of-the-art permutation results for structured sparsity.
Abstract:Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Facial optical flow supports a wide range of tasks in facial motion analysis. However, the lack of high-resolution facial optical flow datasets has hindered progress in this area. In this paper, we introduce Splatting Rasterization Flow (SRFlow), a high-resolution facial optical flow dataset, and Splatting Rasterization Guided FlowNet (SRFlowNet), a facial optical flow model with tailored regularization losses. These losses constrain flow predictions using masks and gradients computed via difference or Sobel operator. This effectively suppresses high-frequency noise and large-scale errors in texture-less or repetitive-pattern regions, enabling SRFlowNet to be the first model explicitly capable of capturing high-resolution skin motion guided by Gaussian splatting rasterization. Experiments show that training with the SRFlow dataset improves facial optical flow estimation across various optical flow models, reducing end-point error (EPE) by up to 42% (from 0.5081 to 0.2953). Furthermore, when coupled with the SRFlow dataset, SRFlowNet achieves up to a 48% improvement in F1-score (from 0.4733 to 0.6947) on a composite of three micro-expression datasets. These results demonstrate the value of advancing both facial optical flow estimation and micro-expression recognition.
Abstract:Diffusion models have achieved remarkable success in image and video generation. However, their inherently multiple step inference process imposes substantial computational overhead, hindering real-world deployment. Accelerating diffusion models is therefore essential, yet determining how to combine multiple model acceleration techniques remains a significant challenge. To address this issue, we introduce a framework driven by large language models (LLMs) for automated acceleration code generation and evaluation. First, we present DiffBench, a comprehensive benchmark that implements a three stage automated evaluation pipeline across diverse diffusion architectures, optimization combinations and deployment scenarios. Second, we propose DiffAgent, an agent that generates optimal acceleration strategies and codes for arbitrary diffusion models. DiffAgent employs a closed-loop workflow in which a planning component and a debugging component iteratively refine the output of a code generation component, while a genetic algorithm extracts performance feedback from the execution environment to guide subsequent code refinements. We provide a detailed explanation of the DiffBench construction and the design principles underlying DiffAgent. Extensive experiments show that DiffBench offers a thorough evaluation of generated codes and that DiffAgent significantly outperforms existing LLMs in producing effective diffusion acceleration strategies.
Abstract:On-policy reinforcement learning (RL), particularly Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), has become the dominant paradigm for fine-tuning large language models (LLMs). While policy ratio clipping stabilizes training, this heuristic hard constraint incurs a fundamental cost: it indiscriminately truncates gradients from high-return yet high-divergence actions, suppressing rare but highly informative "eureka moments" in complex reasoning. Moreover, once data becomes slightly stale, hard clipping renders it unusable, leading to severe sample inefficiency. In this work, we revisit the trust-region objective in policy optimization and show that explicitly constraining the \emph{variance (second central moment) of the policy ratio} provides a principled and smooth relaxation of hard clipping. This distributional constraint stabilizes policy updates while preserving gradient signals from valuable trajectories. Building on this insight, we propose $R^2VPO$ (Ratio-Variance Regularized Policy Optimization), a novel primal-dual framework that supports stable on-policy learning and enables principled off-policy data reuse by dynamically reweighting stale samples rather than discarding them. We extensively evaluate $R^2VPO$ on fine-tuning state-of-the-art LLMs, including DeepSeek-Distill-Qwen-1.5B and the openPangu-Embedded series (1B and 7B), across challenging mathematical reasoning benchmarks. Experimental results show that $R^2VPO$ consistently achieves superior asymptotic performance, with average relative gains of up to 17% over strong clipping-based baselines, while requiring approximately 50% fewer rollouts to reach convergence. These findings establish ratio-variance control as a promising direction for improving both stability and data efficiency in RL-based LLM alignment.
Abstract:Model quantization is critical for deploying large language models (LLMs) on resource-constrained hardware, yet recent work has revealed severe security risks that benign LLMs in full precision may exhibit malicious behaviors after quantization. In this paper, we propose Adversarial Contrastive Learning (ACL), a novel gradient-based quantization attack that achieves superior attack effectiveness by explicitly maximizing the gap between benign and harmful responses probabilities. ACL formulates the attack objective as a triplet-based contrastive loss, and integrates it with a projected gradient descent two-stage distributed fine-tuning strategy to ensure stable and efficient optimization. Extensive experiments demonstrate ACL's remarkable effectiveness, achieving attack success rates of 86.00% for over-refusal, 97.69% for jailbreak, and 92.40% for advertisement injection, substantially outperforming state-of-the-art methods by up to 44.67%, 18.84%, and 50.80%, respectively.
Abstract:Diffusion models have become a leading paradigm for image super-resolution (SR), but existing methods struggle to guarantee both the high-frequency perceptual quality and the low-frequency structural fidelity of generated images. Although inference-time scaling can theoretically improve this trade-off by allocating more computation, existing strategies remain suboptimal: reward-driven particle optimization often causes perceptual over-smoothing, while optimal-path search tends to lose structural consistency. To overcome these difficulties, we propose Iterative Diffusion Inference-Time Scaling with Adaptive Frequency Steering (IAFS), a training-free framework that jointly leverages iterative refinement and frequency-aware particle fusion. IAFS addresses the challenge of balancing perceptual quality and structural fidelity by progressively refining the generated image through iterative correction of structural deviations. Simultaneously, it ensures effective frequency fusion by adaptively integrating high-frequency perceptual cues with low-frequency structural information, allowing for a more accurate and balanced reconstruction across different image details. Extensive experiments across multiple diffusion-based SR models show that IAFS effectively resolves the perception-fidelity conflict, yielding consistently improved perceptual detail and structural accuracy, and outperforming existing inference-time scaling methods.
Abstract:Reinforcement Learning with Human Feedback (RLHF) has proven effective in image generation field guided by reward models to align human preferences. Motivated by this, adapting RLHF for Image Super-Resolution (ISR) tasks has shown promise in optimizing perceptual quality with Image Quality Assessment (IQA) model as reward models. However, the traditional IQA model usually output a single global score, which are exceptionally insensitive to local and fine-grained distortions. This insensitivity allows ISR models to produce perceptually undesirable artifacts that yield spurious high scores, misaligning optimization objectives with perceptual quality and results in reward hacking. To address this, we propose a Fine-grained Perceptual Reward Model (FinPercep-RM) based on an Encoder-Decoder architecture. While providing a global quality score, it also generates a Perceptual Degradation Map that spatially localizes and quantifies local defects. We specifically introduce the FGR-30k dataset to train this model, consisting of diverse and subtle distortions from real-world super-resolution models. Despite the success of the FinPercep-RM model, its complexity introduces significant challenges in generator policy learning, leading to training instability. To address this, we propose a Co-evolutionary Curriculum Learning (CCL) mechanism, where both the reward model and the ISR model undergo synchronized curricula. The reward model progressively increases in complexity, while the ISR model starts with a simpler global reward for rapid convergence, gradually transitioning to the more complex model outputs. This easy-to-hard strategy enables stable training while suppressing reward hacking. Experiments validates the effectiveness of our method across ISR models in both global quality and local realism on RLHF methods.
Abstract:Text-guided image inpainting endeavors to generate new content within specified regions of images using textual prompts from users. The primary challenge is to accurately align the inpainted areas with the user-provided prompts while maintaining a high degree of visual fidelity. While existing inpainting methods have produced visually convincing results by leveraging the pre-trained text-to-image diffusion models, they still struggle to uphold both prompt alignment and visual rationality simultaneously. In this work, we introduce FreeInpaint, a plug-and-play tuning-free approach that directly optimizes the diffusion latents on the fly during inference to improve the faithfulness of the generated images. Technically, we introduce a prior-guided noise optimization method that steers model attention towards valid inpainting regions by optimizing the initial noise. Furthermore, we meticulously design a composite guidance objective tailored specifically for the inpainting task. This objective efficiently directs the denoising process, enhancing prompt alignment and visual rationality by optimizing intermediate latents at each step. Through extensive experiments involving various inpainting diffusion models and evaluation metrics, we demonstrate the effectiveness and robustness of our proposed FreeInpaint.