Abstract:Graph-based Retrieval-Augmented Generation (GraphRAG) mitigates hallucinations in Large Language Models (LLMs) by grounding them in structured knowledge. However, current GraphRAG methods are constrained by a prevailing \textit{build-then-reason} paradigm, which relies on a static, pre-constructed Knowledge Graph (KG). This paradigm faces two critical challenges. First, the KG's inherent incompleteness often breaks reasoning paths. Second, the graph's low signal-to-noise ratio introduces distractor facts, presenting query-relevant but misleading knowledge that disrupts the reasoning process. To address these challenges, we argue for a \textit{reason-and-construct} paradigm and propose Relink, a framework that dynamically builds a query-specific evidence graph. To tackle incompleteness, \textbf{Relink} instantiates required facts from a latent relation pool derived from the original text corpus, repairing broken paths on the fly. To handle misleading or distractor facts, Relink employs a unified, query-aware evaluation strategy that jointly considers candidates from both the KG and latent relations, selecting those most useful for answering the query rather than relying on their pre-existence. This empowers Relink to actively discard distractor facts and construct the most faithful and precise evidence path for each query. Extensive experiments on five Open-Domain Question Answering benchmarks show that Relink achieves significant average improvements of 5.4\% in EM and 5.2\% in F1 over leading GraphRAG baselines, demonstrating the superiority of our proposed framework.
Abstract:Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.