Abstract:Visual speech recognition is a technique to identify spoken content in silent speech videos, which has raised significant attention in recent years. Advancements in data-driven deep learning methods have significantly improved both the speed and accuracy of recognition. However, these deep learning methods can be effected by visual disturbances, such as lightning conditions, skin texture and other user-specific features. Data-driven approaches could reduce the performance degradation caused by these visual disturbances using models pretrained on large-scale datasets. But these methods often require large amounts of training data and computational resources, making them costly. To reduce the influence of user-specific features and enhance performance with limited data, this paper proposed a landmark guided visual feature extractor. Facial landmarks are used as auxiliary information to aid in training the visual feature extractor. A spatio-temporal multi-graph convolutional network is designed to fully exploit the spatial locations and spatio-temporal features of facial landmarks. Additionally, a multi-level lip dynamic fusion framework is introduced to combine the spatio-temporal features of the landmarks with the visual features extracted from the raw video frames. Experimental results show that this approach performs well with limited data and also improves the model's accuracy on unseen speakers.
Abstract:Class prototype construction and matching are core aspects of few-shot action recognition. Previous methods mainly focus on designing spatiotemporal relation modeling modules or complex temporal alignment algorithms. Despite the promising results, they ignored the value of class prototype construction and matching, leading to unsatisfactory performance in recognizing similar categories in every task. In this paper, we propose GgHM, a new framework with Graph-guided Hybrid Matching. Concretely, we learn task-oriented features by the guidance of a graph neural network during class prototype construction, optimizing the intra- and inter-class feature correlation explicitly. Next, we design a hybrid matching strategy, combining frame-level and tuple-level matching to classify videos with multivariate styles. We additionally propose a learnable dense temporal modeling module to enhance the video feature temporal representation to build a more solid foundation for the matching process. GgHM shows consistent improvements over other challenging baselines on several few-shot datasets, demonstrating the effectiveness of our method. The code will be publicly available at https://github.com/jiazheng-xing/GgHM.