Frank
Abstract:Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
Abstract:Large language models (LLMs) trained via reinforcement learning with verifiable reward (RLVR) have achieved breakthroughs on tasks with explicit, automatable verification, such as software programming and mathematical problems. Extending RLVR to electronic design automation (EDA), especially automatically generating hardware description languages (HDLs) like Verilog from natural-language (NL) specifications, however, poses three key challenges: the lack of automated and accurate verification environments, the scarcity of high-quality NL-code pairs, and the prohibitive computation cost of RLVR. To this end, we introduce CodeV-R1, an RLVR framework for training Verilog generation LLMs. First, we develop a rule-based testbench generator that performs robust equivalence checking against golden references. Second, we propose a round-trip data synthesis method that pairs open-source Verilog snippets with LLM-generated NL descriptions, verifies code-NL-code consistency via the generated testbench, and filters out inequivalent examples to yield a high-quality dataset. Third, we employ a two-stage "distill-then-RL" training pipeline: distillation for the cold start of reasoning abilities, followed by adaptive DAPO, our novel RLVR algorithm that can reduce training cost by adaptively adjusting sampling rate. The resulting model, CodeV-R1-7B, achieves 68.6% and 72.9% pass@1 on VerilogEval v2 and RTLLM v1.1, respectively, surpassing prior state-of-the-art by 12~20%, while matching or even exceeding the performance of 671B DeepSeek-R1. We will release our model, training pipeline, and dataset to facilitate research in EDA and LLM communities.
Abstract:Existing human motion generation methods with trajectory and pose inputs operate global processing on both modalities, leading to suboptimal outputs. In this paper, we propose IKMo, an image-keyframed motion generation method based on the diffusion model with trajectory and pose being decoupled. The trajectory and pose inputs go through a two-stage conditioning framework. In the first stage, the dedicated optimization module is applied to refine inputs. In the second stage, trajectory and pose are encoded via a Trajectory Encoder and a Pose Encoder in parallel. Then, motion with high spatial and semantic fidelity is guided by a motion ControlNet, which processes the fused trajectory and pose data. Experiment results based on HumanML3D and KIT-ML datasets demonstrate that the proposed method outperforms state-of-the-art on all metrics under trajectory-keyframe constraints. In addition, MLLM-based agents are implemented to pre-process model inputs. Given texts and keyframe images from users, the agents extract motion descriptions, keyframe poses, and trajectories as the optimized inputs into the motion generation model. We conducts a user study with 10 participants. The experiment results prove that the MLLM-based agents pre-processing makes generated motion more in line with users' expectation. We believe that the proposed method improves both the fidelity and controllability of motion generation by the diffusion model.
Abstract:Despite significant progress, recent studies have indicated that current large language models (LLMs) may still utilize bias during inference, leading to the poor generalizability of LLMs. Some benchmarks are proposed to investigate the generalizability of LLMs, with each piece of data typically containing one type of controlled bias. However, a single piece of data may contain multiple types of biases in practical applications. To bridge this gap, we propose a multi-bias benchmark where each piece of data contains five types of biases. The evaluations conducted on this benchmark reveal that the performance of existing LLMs and debiasing methods is unsatisfying, highlighting the challenge of eliminating multiple types of biases simultaneously. To overcome this challenge, we propose a causal effect estimation-guided multi-bias elimination method (CMBE). This method first estimates the causal effect of multiple types of biases simultaneously. Subsequently, we eliminate the causal effect of biases from the total causal effect exerted by both the semantic information and biases during inference. Experimental results show that CMBE can effectively eliminate multiple types of bias simultaneously to enhance the generalizability of LLMs.
Abstract:3D scene understanding plays a fundamental role in vision applications such as robotics, autonomous driving, and augmented reality. However, advancing learning-based 3D scene understanding remains challenging due to two key limitations: (1) the large scale and complexity of 3D scenes lead to higher computational costs and slower training compared to 2D counterparts; and (2) high-quality annotated 3D datasets are significantly scarcer than those available for 2D vision. These challenges underscore the need for more efficient learning paradigms. In this work, we propose DC-Scene, a data-centric framework tailored for 3D scene understanding, which emphasizes enhancing data quality and training efficiency. Specifically, we introduce a CLIP-driven dual-indicator quality (DIQ) filter, combining vision-language alignment scores with caption-loss perplexity, along with a curriculum scheduler that progressively expands the training pool from the top 25% to 75% of scene-caption pairs. This strategy filters out noisy samples and significantly reduces dependence on large-scale labeled 3D data. Extensive experiments on ScanRefer and Nr3D demonstrate that DC-Scene achieves state-of-the-art performance (86.1 CIDEr with the top-75% subset vs. 85.4 with the full dataset) while reducing training cost by approximately two-thirds, confirming that a compact set of high-quality samples can outperform exhaustive training. Code will be available at https://github.com/AIGeeksGroup/DC-Scene.
Abstract:Scaling RL for LLMs is computationally expensive, largely due to multi-sampling for policy optimization and evaluation, making efficient data selection crucial. Inspired by the Zone of Proximal Development (ZPD) theory, we hypothesize LLMs learn best from data within their potential comprehension zone. Addressing the limitation of conventional, computationally intensive multi-sampling methods for data assessment, we introduce UFO-RL. This novel framework uses a computationally efficient single-pass uncertainty estimation to identify informative data instances, achieving up to 185x faster data evaluation. UFO-RL leverages this metric to select data within the estimated ZPD for training. Experiments show that training with just 10% of data selected by UFO-RL yields performance comparable to or surpassing full-data training, reducing overall training time by up to 16x while enhancing stability and generalization. UFO-RL offers a practical and highly efficient strategy for scaling RL fine-tuning of LLMs by focusing learning on valuable data.
Abstract:Predicting crash events is crucial for understanding crash distributions and their contributing factors, thereby enabling the design of proactive traffic safety policy interventions. However, existing methods struggle to interpret the complex interplay among various sources of traffic crash data, including numeric characteristics, textual reports, crash imagery, environmental conditions, and driver behavior records. As a result, they often fail to capture the rich semantic information and intricate interrelationships embedded in these diverse data sources, limiting their ability to identify critical crash risk factors. In this research, we propose TrafficSafe, a framework that adapts LLMs to reframe crash prediction and feature attribution as text-based reasoning. A multi-modal crash dataset including 58,903 real-world reports together with belonged infrastructure, environmental, driver, and vehicle information is collected and textualized into TrafficSafe Event Dataset. By customizing and fine-tuning LLMs on this dataset, the TrafficSafe LLM achieves a 42% average improvement in F1-score over baselines. To interpret these predictions and uncover contributing factors, we introduce TrafficSafe Attribution, a sentence-level feature attribution framework enabling conditional risk analysis. Findings show that alcohol-impaired driving is the leading factor in severe crashes, with aggressive and impairment-related behaviors having nearly twice the contribution for severe crashes compared to other driver behaviors. Furthermore, TrafficSafe Attribution highlights pivotal features during model training, guiding strategic crash data collection for iterative performance improvements. The proposed TrafficSafe offers a transformative leap in traffic safety research, providing a blueprint for translating advanced AI technologies into responsible, actionable, and life-saving outcomes.
Abstract:Data augmentation is essential in medical imaging for improving classification accuracy, lesion detection, and organ segmentation under limited data conditions. However, two significant challenges remain. First, a pronounced domain gap between natural photographs and medical images can distort critical disease features. Second, augmentation studies in medical imaging are fragmented and limited to single tasks or architectures, leaving the benefits of advanced mix-based strategies unclear. To address these challenges, we propose a unified evaluation framework with six mix-based augmentation methods integrated with both convolutional and transformer backbones on brain tumour MRI and eye disease fundus datasets. Our contributions are threefold. (1) We introduce MediAug, a comprehensive and reproducible benchmark for advanced data augmentation in medical imaging. (2) We systematically evaluate MixUp, YOCO, CropMix, CutMix, AugMix, and SnapMix with ResNet-50 and ViT-B backbones. (3) We demonstrate through extensive experiments that MixUp yields the greatest improvement on the brain tumor classification task for ResNet-50 with 79.19% accuracy and SnapMix yields the greatest improvement for ViT-B with 99.44% accuracy, and that YOCO yields the greatest improvement on the eye disease classification task for ResNet-50 with 91.60% accuracy and CutMix yields the greatest improvement for ViT-B with 97.94% accuracy. Code will be available at https://github.com/AIGeeksGroup/MediAug.
Abstract:Creating photorealistic 3D head avatars from limited input has become increasingly important for applications in virtual reality, telepresence, and digital entertainment. While recent advances like neural rendering and 3D Gaussian splatting have enabled high-quality digital human avatar creation and animation, most methods rely on multiple images or multi-view inputs, limiting their practicality for real-world use. In this paper, we propose SEGA, a novel approach for Single-imagE-based 3D drivable Gaussian head Avatar creation that combines generalized prior models with a new hierarchical UV-space Gaussian Splatting framework. SEGA seamlessly combines priors derived from large-scale 2D datasets with 3D priors learned from multi-view, multi-expression, and multi-ID data, achieving robust generalization to unseen identities while ensuring 3D consistency across novel viewpoints and expressions. We further present a hierarchical UV-space Gaussian Splatting framework that leverages FLAME-based structural priors and employs a dual-branch architecture to disentangle dynamic and static facial components effectively. The dynamic branch encodes expression-driven fine details, while the static branch focuses on expression-invariant regions, enabling efficient parameter inference and precomputation. This design maximizes the utility of limited 3D data and achieves real-time performance for animation and rendering. Additionally, SEGA performs person-specific fine-tuning to further enhance the fidelity and realism of the generated avatars. Experiments show our method outperforms state-of-the-art approaches in generalization ability, identity preservation, and expression realism, advancing one-shot avatar creation for practical applications.
Abstract:Large language models (LLMs) acquire general linguistic knowledge from massive-scale pretraining. However, pretraining data mainly comprised of web-crawled texts contain undesirable social biases which can be perpetuated or even amplified by LLMs. In this study, we propose an efficient yet effective annotation pipeline to investigate social biases in the pretraining corpora. Our pipeline consists of protected attribute detection to identify diverse demographics, followed by regard classification to analyze the language polarity towards each attribute. Through our experiments, we demonstrate the effect of our bias analysis and mitigation measures, focusing on Common Crawl as the most representative pretraining corpus.