Frank
Abstract:3D Human Pose Estimation (3D HPE) is vital in various applications, from person re-identification and action recognition to virtual reality. However, the reliance on annotated 3D data collected in controlled environments poses challenges for generalization to diverse in-the-wild scenarios. Existing domain adaptation (DA) paradigms like general DA and source-free DA for 3D HPE overlook the issues of non-stationary target pose datasets. To address these challenges, we propose a novel task named lifelong domain adaptive 3D HPE. To our knowledge, we are the first to introduce the lifelong domain adaptation to the 3D HPE task. In this lifelong DA setting, the pose estimator is pretrained on the source domain and subsequently adapted to distinct target domains. Moreover, during adaptation to the current target domain, the pose estimator cannot access the source and all the previous target domains. The lifelong DA for 3D HPE involves overcoming challenges in adapting to current domain poses and preserving knowledge from previous domains, particularly combating catastrophic forgetting. We present an innovative Generative Adversarial Network (GAN) framework, which incorporates 3D pose generators, a 2D pose discriminator, and a 3D pose estimator. This framework effectively mitigates domain shifts and aligns original and augmented poses. Moreover, we construct a novel 3D pose generator paradigm, integrating pose-aware, temporal-aware, and domain-aware knowledge to enhance the current domain's adaptation and alleviate catastrophic forgetting on previous domains. Our method demonstrates superior performance through extensive experiments on diverse domain adaptive 3D HPE datasets.




Abstract:Purple fringing, a persistent artifact caused by Longitudinal Chromatic Aberration (LCA) in camera lenses, has long degraded the clarity and realism of digital imaging. Traditional solutions rely on complex and expensive apochromatic (APO) lens hardware and the extraction of handcrafted features, ignoring the data-driven approach. To fill this gap, we introduce DCA-LUT, the first deep learning framework for purple fringing removal. Inspired by the physical root of the problem, the spatial misalignment of RGB color channels due to lens dispersion, we introduce a novel Chromatic-Aware Coordinate Transformation (CA-CT) module, learning an image-adaptive color space to decouple and isolate fringing into a dedicated dimension. This targeted separation allows the network to learn a precise ``purple fringe channel", which then guides the accurate restoration of the luminance channel. The final color correction is performed by a learned 5D Look-Up Table (5D LUT), enabling efficient and powerful% non-linear color mapping. To enable robust training and fair evaluation, we constructed a large-scale synthetic purple fringing dataset (PF-Synth). Extensive experiments in synthetic and real-world datasets demonstrate that our method achieves state-of-the-art performance in purple fringing removal.
Abstract:Ultra-High-Definition (UHD) image dehazing faces challenges such as limited scene adaptability in prior-based methods and high computational complexity with color distortion in deep learning approaches. To address these issues, we propose 4KDehazeFlow, a novel method based on Flow Matching and the Haze-Aware vector field. This method models the dehazing process as a progressive optimization of continuous vector field flow, providing efficient data-driven adaptive nonlinear color transformation for high-quality dehazing. Specifically, our method has the following advantages: 1) 4KDehazeFlow is a general method compatible with various deep learning networks, without relying on any specific network architecture. 2) We propose a learnable 3D lookup table (LUT) that encodes haze transformation parameters into a compact 3D mapping matrix, enabling efficient inference through precomputed mappings. 3) We utilize a fourth-order Runge-Kutta (RK4) ordinary differential equation (ODE) solver to stably solve the dehazing flow field through an accurate step-by-step iterative method, effectively suppressing artifacts. Extensive experiments show that 4KDehazeFlow exceeds seven state-of-the-art methods. It delivers a 2dB PSNR increase and better performance in dense haze and color fidelity.
Abstract:Purple flare, a diffuse chromatic aberration artifact commonly found around highlight areas, severely degrades the tone transition and color of the image. Existing traditional methods are based on hand-crafted features, which lack flexibility and rely entirely on fixed priors, while the scarcity of paired training data critically hampers deep learning. To address this issue, we propose a novel network built upon decoupled HSV Look-Up Tables (LUTs). The method aims to simplify color correction by adjusting the Hue (H), Saturation (S), and Value (V) components independently. This approach resolves the inherent color coupling problems in traditional methods. Our model adopts a two-stage architecture: First, a Chroma-Aware Spectral Tokenizer (CAST) converts the input image from RGB space to HSV space and independently encodes the Hue (H) and Value (V) channels into a set of semantic tokens describing the Purple flare status; second, the HSV-LUT module takes these tokens as input and dynamically generates independent correction curves (1D-LUTs) for the three channels H, S, and V. To effectively train and validate our model, we built the first large-scale purple flare dataset with diverse scenes. We also proposed new metrics and a loss function specifically designed for this task. Extensive experiments demonstrate that our model not only significantly outperforms existing methods in visual effects but also achieves state-of-the-art performance on all quantitative metrics.
Abstract:As privacy regulations become more stringent and access to real-world data becomes increasingly constrained, synthetic data generation has emerged as a vital solution, especially for tabular datasets, which are central to domains like finance, healthcare and the social sciences. This survey presents a comprehensive and focused review of recent advances in synthetic tabular data generation, emphasizing methods that preserve complex feature relationships, maintain statistical fidelity, and satisfy privacy requirements. A key contribution of this work is the introduction of a novel taxonomy based on practical generation objectives, including intended downstream applications, privacy guarantees, and data utility, directly informing methodological design and evaluation strategies. Therefore, this review prioritizes the actionable goals that drive synthetic data creation, including conditional generation and risk-sensitive modeling. Additionally, the survey proposes a benchmark framework to align technical innovation with real-world demands. By bridging theoretical foundations with practical deployment, this work serves as both a roadmap for future research and a guide for implementing synthetic tabular data in privacy-critical environments.




Abstract:In this paper, we propose an efficient visual transformer framework for ultra-high-definition (UHD) image dehazing that addresses the key challenges of slow training speed and high memory consumption for existing methods. Our approach introduces two key innovations: 1) an \textbf{a}daptive \textbf{n}ormalization mechanism inspired by the nGPT architecture that enables ultra-fast and stable training with a network with a restricted range of parameter expressions; and 2) we devise an atmospheric scattering-aware KV caching mechanism that dynamically optimizes feature preservation based on the physical haze formation model. The proposed architecture improves the training convergence speed by \textbf{5 $\times$} while reducing memory overhead, enabling real-time processing of 50 high-resolution images per second on an RTX4090 GPU. Experimental results show that our approach maintains state-of-the-art dehazing quality while significantly improving computational efficiency for 4K/8K image restoration tasks. Furthermore, we provide a new dehazing image interpretable method with the help of an integrated gradient attribution map. Our code can be found here: https://anonymous.4open.science/r/anDehazeFormer-632E/README.md.
Abstract:Predicting crash events is crucial for understanding crash distributions and their contributing factors, thereby enabling the design of proactive traffic safety policy interventions. However, existing methods struggle to interpret the complex interplay among various sources of traffic crash data, including numeric characteristics, textual reports, crash imagery, environmental conditions, and driver behavior records. As a result, they often fail to capture the rich semantic information and intricate interrelationships embedded in these diverse data sources, limiting their ability to identify critical crash risk factors. In this research, we propose TrafficSafe, a framework that adapts LLMs to reframe crash prediction and feature attribution as text-based reasoning. A multi-modal crash dataset including 58,903 real-world reports together with belonged infrastructure, environmental, driver, and vehicle information is collected and textualized into TrafficSafe Event Dataset. By customizing and fine-tuning LLMs on this dataset, the TrafficSafe LLM achieves a 42% average improvement in F1-score over baselines. To interpret these predictions and uncover contributing factors, we introduce TrafficSafe Attribution, a sentence-level feature attribution framework enabling conditional risk analysis. Findings show that alcohol-impaired driving is the leading factor in severe crashes, with aggressive and impairment-related behaviors having nearly twice the contribution for severe crashes compared to other driver behaviors. Furthermore, TrafficSafe Attribution highlights pivotal features during model training, guiding strategic crash data collection for iterative performance improvements. The proposed TrafficSafe offers a transformative leap in traffic safety research, providing a blueprint for translating advanced AI technologies into responsible, actionable, and life-saving outcomes.




Abstract:Since human and environmental factors interfere, captured polyp images usually suffer from issues such as dim lighting, blur, and overexposure, which pose challenges for downstream polyp segmentation tasks. To address the challenges of noise-induced degradation in polyp images, we present AgentPolyp, a novel framework integrating CLIP-based semantic guidance and dynamic image enhancement with a lightweight neural network for segmentation. The agent first evaluates image quality using CLIP-driven semantic analysis (e.g., identifying ``low-contrast polyps with vascular textures") and adapts reinforcement learning strategies to dynamically apply multi-modal enhancement operations (e.g., denoising, contrast adjustment). A quality assessment feedback loop optimizes pixel-level enhancement and segmentation focus in a collaborative manner, ensuring robust preprocessing before neural network segmentation. This modular architecture supports plug-and-play extensions for various enhancement algorithms and segmentation networks, meeting deployment requirements for endoscopic devices.
Abstract:Recent advances in dance generation have enabled automatic synthesis of 3D dance motions. However, existing methods still struggle to produce high-fidelity dance sequences that simultaneously deliver exceptional realism, precise dance-music synchronization, high motion diversity, and physical plausibility. Moreover, existing methods lack the flexibility to edit dance sequences according to diverse guidance signals, such as musical prompts, pose constraints, action labels, and genre descriptions, significantly restricting their creative utility and adaptability. Unlike the existing approaches, DanceMosaic enables fast and high-fidelity dance generation, while allowing multimodal motion editing. Specifically, we propose a multimodal masked motion model that fuses the text-to-motion model with music and pose adapters to learn probabilistic mapping from diverse guidance signals to high-quality dance motion sequences via progressive generative masking training. To further enhance the motion generation quality, we propose multimodal classifier-free guidance and inference-time optimization mechanism that further enforce the alignment between the generated motions and the multimodal guidance. Extensive experiments demonstrate that our method establishes a new state-of-the-art performance in dance generation, significantly advancing the quality and editability achieved by existing approaches.




Abstract:Label Distribution Learning (LDL) aims to characterize the polysemy of an instance by building a set of descriptive degrees corresponding to the instance. In recent years, researchers seek to model to obtain an accurate label distribution by using low-rank, label relations, expert experiences, and label uncertainty estimation. In general, these methods are based on algorithms with parameter learning in a linear (including kernel functions) or deep learning framework. However, these methods are difficult to deploy and update online due to high training costs, limited scalability, and outlier sensitivity. To address this problem, we design a novel LDL method called UAKNN, which has the advantages of the KNN algorithm with the benefits of uncertainty modeling. In addition, we provide solutions to the dilemma of existing work on extremely label distribution spaces. Extensive experiments demonstrate that our method is significantly competitive on 12 benchmarks and that the inference speed of the model is well-suited for industrial-level applications.