Alert button
Picture for Dong Hu

Dong Hu

Alert button

A Novel Truncated Norm Regularization Method for Multi-channel Color Image Denoising

Jul 16, 2023
Yiwen Shan, Dong Hu, Haoming Ding, Chunming Yang, Zhi Wang

Due to the high flexibility and remarkable performance, low-rank approximation methods has been widely studied for color image denoising. However, those methods mostly ignore either the cross-channel difference or the spatial variation of noise, which limits their capacity in real world color image denoising. To overcome those drawbacks, this paper is proposed to denoise color images with a double-weighted truncated nuclear norm minus truncated Frobenius norm minimization (DtNFM) method. Through exploiting the nonlocal self-similarity of the noisy image, the similar structures are gathered and a series of similar patch matrices are constructed. For each group, the DtNFM model is conducted for estimating its denoised version. The denoised image would be obtained by concatenating all the denoised patch matrices. The proposed DtNFM model has two merits. First, it models and utilizes both the cross-channel difference and the spatial variation of noise. This provides sufficient flexibility for handling the complex distribution of noise in real world images. Second, the proposed DtNFM model provides a close approximation to the underlying clean matrix since it can treat different rank components flexibly. To solve the problem resulted from DtNFM model, an accurate and effective algorithm is proposed by exploiting the framework of the alternating direction method of multipliers (ADMM). The generated subproblems are discussed in detail. And their global optima can be easily obtained in closed-form. Rigorous mathematical derivation proves that the solution sequences generated by the algorithm converge to a single critical point. Extensive experiments on synthetic and real noise datasets demonstrate that the proposed method outperforms many state-of-the-art color image denoising methods.

Viaarxiv icon

Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising

Sep 16, 2022
Yiwen Shan, Dong Hu, Zhi Wang, Tao Jia

Figure 1 for Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising
Figure 2 for Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising
Figure 3 for Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising
Figure 4 for Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising

Color image denoising is frequently encountered in various image processing and computer vision tasks. One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately. However, such a strategy can not fully exploit the correlated information between channels and is inadequate to obtain satisfactory results. To address this issue, this paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework. Specifically, based on the block-matching, the color image is decomposed into overlapping RGB patches. For each patch, we stack its similar neighbors to form the corresponding patch matrix. The proposed model is performed on the patch matrix to recover its noise-free version. During the recovery process, a) a weight matrix is introduced to fully utilize the noise difference between channels; b) the singular values are shrunk adaptively without additionally assigning weights. With them, the proposed model can achieve promising results while keeping simplicity. To solve the proposed model, an accurate and effective algorithm is built based on the alternating direction method of multipliers framework. The solution of each updating step can be analytically expressed in closed-from. Rigorous theoretical analysis proves the solution sequences generated by the proposed algorithm converge to their respective stationary points. Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.

Viaarxiv icon

WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic Segmentation for Lung Adenocarcinoma

Apr 14, 2022
Chu Han, Xipeng Pan, Lixu Yan, Huan Lin, Bingbing Li, Su Yao, Shanshan Lv, Zhenwei Shi, Jinhai Mai, Jiatai Lin, Bingchao Zhao, Zeyan Xu, Zhizhen Wang, Yumeng Wang, Yuan Zhang, Huihui Wang, Chao Zhu, Chunhui Lin, Lijian Mao, Min Wu, Luwen Duan, Jingsong Zhu, Dong Hu, Zijie Fang, Yang Chen, Yongbing Zhang, Yi Li, Yiwen Zou, Yiduo Yu, Xiaomeng Li, Haiming Li, Yanfen Cui, Guoqiang Han, Yan Xu, Jun Xu, Huihua Yang, Chunming Li, Zhenbing Liu, Cheng Lu, Xin Chen, Changhong Liang, Qingling Zhang, Zaiyi Liu

Figure 1 for WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic Segmentation for Lung Adenocarcinoma
Figure 2 for WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic Segmentation for Lung Adenocarcinoma
Figure 3 for WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic Segmentation for Lung Adenocarcinoma
Figure 4 for WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic Segmentation for Lung Adenocarcinoma

Lung cancer is the leading cause of cancer death worldwide, and adenocarcinoma (LUAD) is the most common subtype. Exploiting the potential value of the histopathology images can promote precision medicine in oncology. Tissue segmentation is the basic upstream task of histopathology image analysis. Existing deep learning models have achieved superior segmentation performance but require sufficient pixel-level annotations, which is time-consuming and expensive. To enrich the label resources of LUAD and to alleviate the annotation efforts, we organize this challenge WSSS4LUAD to call for the outstanding weakly-supervised semantic segmentation (WSSS) techniques for histopathology images of LUAD. Participants have to design the algorithm to segment tumor epithelial, tumor-associated stroma and normal tissue with only patch-level labels. This challenge includes 10,091 patch-level annotations (the training set) and over 130 million labeled pixels (the validation and test sets), from 87 WSIs (67 from GDPH, 20 from TCGA). All the labels were generated by a pathologist-in-the-loop pipeline with the help of AI models and checked by the label review board. Among 532 registrations, 28 teams submitted the results in the test phase with over 1,000 submissions. Finally, the first place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919). According to the technical reports of the top-tier teams, CAM is still the most popular approach in WSSS. Cutmix data augmentation has been widely adopted to generate more reliable samples. With the success of this challenge, we believe that WSSS approaches with patch-level annotations can be a complement to the traditional pixel annotations while reducing the annotation efforts. The entire dataset has been released to encourage more researches on computational pathology in LUAD and more novel WSSS techniques.

Viaarxiv icon

Separable-HoverNet and Instance-YOLO for Colon Nuclei Identification and Counting

Mar 01, 2022
Chunhui Lin, Liukun Zhang, Lijian Mao, Min Wu, Dong Hu

Nuclear segmentation, classification and quantification within Haematoxylin & Eosin stained histology images enables the extraction of interpretable cell-based features that can be used in downstream explainable models in computational pathology (CPath). However, automatic recognition of different nuclei is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intraclass variability. In this work, we propose an approach that combine Separable-HoverNet and Instance-YOLOv5 to indentify colon nuclei small and unbalanced. Our approach can achieve mPQ+ 0.389 on the Segmentation and Classification-Preliminary Test Dataset and r2 0.599 on the Cellular Composition-Preliminary Test Dataset on ISBI 2022 CoNIC Challenge.

* arXiv admin note: text overlap with arXiv:2111.14485 by other authors 
Viaarxiv icon

NoisyCUR: An algorithm for two-cost budgeted matrix completion

Apr 16, 2021
Dong Hu, Alex Gittens, Malik Magdon-Ismail

Figure 1 for NoisyCUR: An algorithm for two-cost budgeted matrix completion
Figure 2 for NoisyCUR: An algorithm for two-cost budgeted matrix completion
Figure 3 for NoisyCUR: An algorithm for two-cost budgeted matrix completion
Figure 4 for NoisyCUR: An algorithm for two-cost budgeted matrix completion

Matrix completion is a ubiquitous tool in machine learning and data analysis. Most work in this area has focused on the number of observations necessary to obtain an accurate low-rank approximation. In practice, however, the cost of observations is an important limiting factor, and experimentalists may have on hand multiple modes of observation with differing noise-vs-cost trade-offs. This paper considers matrix completion subject to such constraints: a budget is imposed and the experimentalist's goal is to allocate this budget between two sampling modalities in order to recover an accurate low-rank approximation. Specifically, we consider that it is possible to obtain low noise, high cost observations of individual entries or high noise, low cost observations of entire columns. We introduce a regression-based completion algorithm for this setting and experimentally verify the performance of our approach on both synthetic and real data sets. When the budget is low, our algorithm outperforms standard completion algorithms. When the budget is high, our algorithm has comparable error to standard nuclear norm completion algorithms and requires much less computational effort.

Viaarxiv icon