Abstract:3D scene understanding plays a fundamental role in vision applications such as robotics, autonomous driving, and augmented reality. However, advancing learning-based 3D scene understanding remains challenging due to two key limitations: (1) the large scale and complexity of 3D scenes lead to higher computational costs and slower training compared to 2D counterparts; and (2) high-quality annotated 3D datasets are significantly scarcer than those available for 2D vision. These challenges underscore the need for more efficient learning paradigms. In this work, we propose DC-Scene, a data-centric framework tailored for 3D scene understanding, which emphasizes enhancing data quality and training efficiency. Specifically, we introduce a CLIP-driven dual-indicator quality (DIQ) filter, combining vision-language alignment scores with caption-loss perplexity, along with a curriculum scheduler that progressively expands the training pool from the top 25% to 75% of scene-caption pairs. This strategy filters out noisy samples and significantly reduces dependence on large-scale labeled 3D data. Extensive experiments on ScanRefer and Nr3D demonstrate that DC-Scene achieves state-of-the-art performance (86.1 CIDEr with the top-75% subset vs. 85.4 with the full dataset) while reducing training cost by approximately two-thirds, confirming that a compact set of high-quality samples can outperform exhaustive training. Code will be available at https://github.com/AIGeeksGroup/DC-Scene.
Abstract:Generative Adversarial Networks (GANs) have emerged as a prominent research focus for image editing tasks, leveraging the powerful image generation capabilities of the GAN framework to produce remarkable results.However, prevailing approaches are contingent upon extensive training datasets and explicit supervision, presenting a significant challenge in manipulating the diverse attributes of new image classes with limited sample availability. To surmount this hurdle, we introduce TAGE, an innovative image generation network comprising three integral modules: the Codebook Learning Module (CLM), the Code Prediction Module (CPM) and the Prompt-driven Semantic Module (PSM). The CPM module delves into the semantic dimensions of category-agnostic attributes, encapsulating them within a discrete codebook. This module is predicated on the concept that images are assemblages of attributes, and thus, by editing these category-independent attributes, it is theoretically possible to generate images from unseen categories. Subsequently, the CPM module facilitates naturalistic image editing by predicting indices of category-independent attribute vectors within the codebook. Additionally, the PSM module generates semantic cues that are seamlessly integrated into the Transformer architecture of the CPM, enhancing the model's comprehension of the targeted attributes for editing. With these semantic cues, the model can generate images that accentuate desired attributes more prominently while maintaining the integrity of the original category, even with a limited number of samples. We have conducted extensive experiments utilizing the Animal Faces, Flowers, and VGGFaces datasets. The results of these experiments demonstrate that our proposed method not only achieves superior performance but also exhibits a high degree of stability when compared to other few-shot image generation techniques.