Abstract:The capability of performing long-horizon, language-guided robotic manipulation tasks critically relies on leveraging historical information and generating coherent action sequences. However, such capabilities are often overlooked by existing Vision-Language-Action (VLA) models. To solve this challenge, we propose LoLA (Long Horizon Latent Action Learning), a framework designed for robot manipulation that integrates long-term multi-view observations and robot proprioception to enable multi-step reasoning and action generation. We first employ Vision-Language Models to encode rich contextual features from historical sequences and multi-view observations. We further introduces a key module, State-Aware Latent Re-representation, which transforms visual inputs and language commands into actionable robot motion space. Unlike existing VLA approaches that merely concatenate robot proprioception (e.g., joint angles) with VL embeddings, this module leverages such robot states to explicitly ground VL representations in physical scale through a learnable "embodiment-anchored" latent space. We trained LoLA on diverse robotic pre-training datasets and conducted extensive evaluations on simulation benchmarks (SIMPLER and LIBERO), as well as two real-world tasks on Franka and Bi-Manual Aloha robots. Results show that LoLA significantly outperforms prior state-of-the-art methods (e.g., pi0), particularly in long-horizon manipulation tasks.
Abstract:One of many impediments to applying graph neural networks (GNNs) to large-scale real-world graph data is the challenge of centralized training, which requires aggregating data from different organizations, raising privacy concerns. Federated graph learning (FGL) addresses this by enabling collaborative GNN model training without sharing private data. However, a core challenge in FGL systems is the variation in local training data distributions among clients, known as the data heterogeneity problem. Most existing solutions suffer from two problems: (1) The typical optimizer based on empirical risk minimization tends to cause local models to fall into sharp valleys and weakens their generalization to out-of-distribution graph data. (2) The prevalent dimensional collapse in the learned representations of local graph data has an adverse impact on the classification capacity of the GNN model. To this end, we formulate a novel optimization objective that is aware of the sharpness (i.e., the curvature of the loss surface) of local GNN models. By minimizing the loss function and its sharpness simultaneously, we seek out model parameters in a flat region with uniformly low loss values, thus improving the generalization over heterogeneous data. By introducing a regularizer based on the correlation matrix of local representations, we relax the correlations of representations generated by individual local graph samples, so as to alleviate the dimensional collapse of the learned model. The proposed \textbf{S}harpness-aware f\textbf{E}derated gr\textbf{A}ph \textbf{L}earning (SEAL) algorithm can enhance the classification accuracy and generalization ability of local GNN models in federated graph learning. Experimental studies on several graph classification benchmarks show that SEAL consistently outperforms SOTA FGL baselines and provides gains for more participants.
Abstract:Discrete Token Modeling (DTM), which employs vector quantization techniques, has demonstrated remarkable success in modeling non-natural language modalities, particularly in time series generation. While our prior work SDformer established the first DTM-based framework to achieve state-of-the-art performance in this domain, two critical limitations persist in existing DTM approaches: 1) their inability to capture multi-scale temporal patterns inherent to complex time series data, and 2) the absence of theoretical foundations to guide model optimization. To address these challenges, we proposes a novel multi-scale DTM-based time series generation method, called Multi-Scale Discrete Transformer (MSDformer). MSDformer employs a multi-scale time series tokenizer to learn discrete token representations at multiple scales, which jointly characterize the complex nature of time series data. Subsequently, MSDformer applies a multi-scale autoregressive token modeling technique to capture the multi-scale patterns of time series within the discrete latent space. Theoretically, we validate the effectiveness of the DTM method and the rationality of MSDformer through the rate-distortion theorem. Comprehensive experiments demonstrate that MSDformer significantly outperforms state-of-the-art methods. Both theoretical analysis and experimental results demonstrate that incorporating multi-scale information and modeling multi-scale patterns can substantially enhance the quality of generated time series in DTM-based approaches. The code will be released upon acceptance.




Abstract:Spiking Neural Networks (SNNs) offer a promising, biologically inspired approach for processing spatiotemporal data, particularly for time series forecasting. However, conventional neuron models like the Leaky Integrate-and-Fire (LIF) struggle to capture long-term dependencies and effectively process multi-scale temporal dynamics. To overcome these limitations, we introduce the Temporal Segment Leaky Integrate-and-Fire (TS-LIF) model, featuring a novel dual-compartment architecture. The dendritic and somatic compartments specialize in capturing distinct frequency components, providing functional heterogeneity that enhances the neuron's ability to process both low- and high-frequency information. Furthermore, the newly introduced direct somatic current injection reduces information loss during intra-neuronal transmission, while dendritic spike generation improves multi-scale information extraction. We provide a theoretical stability analysis of the TS-LIF model and explain how each compartment contributes to distinct frequency response characteristics. Experimental results show that TS-LIF outperforms traditional SNNs in time series forecasting, demonstrating better accuracy and robustness, even with missing data. TS-LIF advances the application of SNNs in time-series forecasting, providing a biologically inspired approach that captures complex temporal dynamics and offers potential for practical implementation in diverse forecasting scenarios. The source code is available at https://github.com/kkking-kk/TS-LIF.
Abstract:With the rapid advancements of large-scale text-to-image diffusion models, various practical applications have emerged, bringing significant convenience to society. However, model developers may misuse the unauthorized data to train diffusion models. These data are at risk of being memorized by the models, thus potentially violating citizens' privacy rights. Therefore, in order to judge whether a specific image is utilized as a member of a model's training set, Membership Inference Attack (MIA) is proposed to serve as a tool for privacy protection. Current MIA methods predominantly utilize pixel-wise comparisons as distinguishing clues, considering the pixel-level memorization characteristic of diffusion models. However, it is practically impossible for text-to-image models to memorize all the pixel-level information in massive training sets. Therefore, we move to the more advanced structure-level memorization. Observations on the diffusion process show that the structures of members are better preserved compared to those of nonmembers, indicating that diffusion models possess the capability to remember the structures of member images from training sets. Drawing on these insights, we propose a simple yet effective MIA method tailored for text-to-image diffusion models. Extensive experimental results validate the efficacy of our approach. Compared to current pixel-level baselines, our approach not only achieves state-of-the-art performance but also demonstrates remarkable robustness against various distortions.
Abstract:A method was proposed for the point cloud-based registration and image fusion between cardiac single photon emission computed tomography (SPECT) myocardial perfusion images (MPI) and cardiac computed tomography angiograms (CTA). Firstly, the left ventricle (LV) epicardial regions (LVERs) in SPECT and CTA images were segmented by using different U-Net neural networks trained to generate the point clouds of the LV epicardial contours (LVECs). Secondly, according to the characteristics of cardiac anatomy, the special points of anterior and posterior interventricular grooves (APIGs) were manually marked in both SPECT and CTA image volumes. Thirdly, we developed an in-house program for coarsely registering the special points of APIGs to ensure a correct cardiac orientation alignment between SPECT and CTA images. Fourthly, we employed ICP, SICP or CPD algorithm to achieve a fine registration for the point clouds (together with the special points of APIGs) of the LV epicardial surfaces (LVERs) in SPECT and CTA images. Finally, the image fusion between SPECT and CTA was realized after the fine registration. The experimental results showed that the cardiac orientation was aligned well and the mean distance error of the optimal registration method (CPD with affine transform) was consistently less than 3 mm. The proposed method could effectively fuse the structures from cardiac CTA and SPECT functional images, and demonstrated a potential in assisting in accurate diagnosis of cardiac diseases by combining complementary advantages of the two imaging modalities.




Abstract:Session-based recommendation (SBR) aims to predict the next item at a certain time point based on anonymous user behavior sequences. Existing methods typically model session representation based on simple item transition information. However, since session-based data consists of limited users' short-term interactions, modeling session representation by capturing fixed item transition information from a single dimension suffers from data sparsity. In this paper, we propose a novel contrastive multi-level graph neural networks (CM-GNN) to better exploit complex and high-order item transition information. Specifically, CM-GNN applies local-level graph convolutional network (L-GCN) and global-level network (G-GCN) on the current session and all the sessions respectively, to effectively capture pairwise relations over all the sessions by aggregation strategy. Meanwhile, CM-GNN applies hyper-level graph convolutional network (H-GCN) to capture high-order information among all the item transitions. CM-GNN further introduces an attention-based fusion module to learn pairwise relation-based session representation by fusing the item representations generated by L-GCN and G-GCN. CM-GNN averages the item representations obtained by H-GCN to obtain high-order relation-based session representation. Moreover, to convert the high-order item transition information into the pairwise relation-based session representation, CM-GNN maximizes the mutual information between the representations derived from the fusion module and the average pool layer by contrastive learning paradigm. We conduct extensive experiments on multiple widely used benchmark datasets to validate the efficacy of the proposed method. The encouraging results demonstrate that our proposed method outperforms the state-of-the-art SBR techniques.




Abstract:Alzheimer's disease (AD) is a neurodegenerative disorder that is beginning with amyloidosis, followed by neuronal loss and deterioration in structure, function, and cognition. The accumulation of amyloid-beta in the brain, measured through 18F-florbetapir (AV45) positron emission tomography (PET) imaging, has been widely used for early diagnosis of AD. However, the relationship between amyloid-beta accumulation and AD pathophysiology remains unclear, and causal inference approaches are needed to uncover how amyloid-beta levels can impact AD development. In this paper, we propose a graph varying coefficient neural network (GVCNet) for estimating the individual treatment effect with continuous treatment levels using a graph convolutional neural network. We highlight the potential of causal inference approaches, including GVCNet, for measuring the regional causal connections between amyloid-beta accumulation and AD pathophysiology, which may serve as a robust tool for early diagnosis and tailored care.




Abstract:Vision multi-layer perceptrons (MLPs) have shown promising performance in computer vision tasks, and become the main competitor of CNNs and vision Transformers. They use token-mixing layers to capture cross-token interactions, as opposed to the multi-head self-attention mechanism used by Transformers. However, the heavily parameterized token-mixing layers naturally lack mechanisms to capture local information and multi-granular non-local relations, thus their discriminative power is restrained. To tackle this issue, we propose a new positional spacial gating unit (PoSGU). It exploits the attention formulations used in the classical relative positional encoding (RPE), to efficiently encode the cross-token relations for token mixing. It can successfully reduce the current quadratic parameter complexity $O(N^2)$ of vision MLPs to $O(N)$ and $O(1)$. We experiment with two RPE mechanisms, and further propose a group-wise extension to improve their expressive power with the accomplishment of multi-granular contexts. These then serve as the key building blocks of a new type of vision MLP, referred to as PosMLP. We evaluate the effectiveness of the proposed approach by conducting thorough experiments, demonstrating an improved or comparable performance with reduced parameter complexity. For instance, for a model trained on ImageNet1K, we achieve a performance improvement from 72.14\% to 74.02\% and a learnable parameter reduction from $19.4M$ to $18.2M$. Code could be found at \href{https://github.com/Zhicaiwww/PosMLP}{https://github.com/Zhicaiwww/PosMLP}.




Abstract:The tactile sensing capabilities of human hands are essential in performing daily activities. Simultaneously perceiving normal and shear forces via the mechanoreceptors integrated into the hands enables humans to achieve daily tasks like grasping delicate objects. In this paper, we design and fabricate a novel biomimetic tactile sensor with skin-like heterogeneity that perceives normal and shear contact forces simultaneously. It mimics the multilayers of mechanoreceptors by combining an extrinsic layer (piezoresistive sensors) and an intrinsic layer (a Hall sensor) so that it can perform estimation of contact force directions, locations, and joint-level torque. By integrating our sensors, a robotic gripper can obtain contact force feedback at fingertips; accordingly, robots can perform challenging tasks, such as tweezers usage, and egg grasping. This insightful sensor design can be customized and applied in different areas of robots and provide them with heterogeneous force sensing, potentially supporting robotics in acquiring skin-like tactile feedback.