University of Chinese Academy of Sciences, Key Lab of Intell. Info. Process., Inst. of Comput. Tech., Chinese Academy of Sciences, Peng Cheng Laboratory
Abstract:Multimodal Large Language Models (MLLMs) have enabled transformative advancements across diverse applications but remain susceptible to safety threats, especially jailbreak attacks that induce harmful outputs. To systematically evaluate and improve their safety, we organized the Adversarial Testing & Large-model Alignment Safety Grand Challenge (ATLAS) 2025}. This technical report presents findings from the competition, which involved 86 teams testing MLLM vulnerabilities via adversarial image-text attacks in two phases: white-box and black-box evaluations. The competition results highlight ongoing challenges in securing MLLMs and provide valuable guidance for developing stronger defense mechanisms. The challenge establishes new benchmarks for MLLM safety evaluation and lays groundwork for advancing safer multimodal AI systems. The code and data for this challenge are openly available at https://github.com/NY1024/ATLAS_Challenge_2025.
Abstract:Concept erasing has recently emerged as an effective paradigm to prevent text-to-image diffusion models from generating visually undesirable or even harmful content. However, current removal methods heavily rely on manually crafted text prompts, making it challenging to achieve a high erasure (efficacy) while minimizing the impact on other benign concepts (usability). In this paper, we attribute the limitations to the inherent gap between the text and image modalities, which makes it hard to transfer the intricately entangled concept knowledge from text prompts to the image generation process. To address this, we propose a novel solution by directly integrating visual supervision into the erasure process, introducing the first text-image Collaborative Concept Erasing (Co-Erasing) framework. Specifically, Co-Erasing describes the concept jointly by text prompts and the corresponding undesirable images induced by the prompts, and then reduces the generating probability of the target concept through negative guidance. This approach effectively bypasses the knowledge gap between text and image, significantly enhancing erasure efficacy. Additionally, we design a text-guided image concept refinement strategy that directs the model to focus on visual features most relevant to the specified text concept, minimizing disruption to other benign concepts. Finally, comprehensive experiments suggest that Co-Erasing outperforms state-of-the-art erasure approaches significantly with a better trade-off between efficacy and usability. Codes are available at https://github.com/Ferry-Li/Co-Erasing.
Abstract:This paper focuses on implanting multiple heterogeneous backdoor triggers in bridge-based diffusion models designed for complex and arbitrary input distributions. Existing backdoor formulations mainly address single-attack scenarios and are limited to Gaussian noise input models. To fill this gap, we propose MixBridge, a novel diffusion Schr\"odinger bridge (DSB) framework to cater to arbitrary input distributions (taking I2I tasks as special cases). Beyond this trait, we demonstrate that backdoor triggers can be injected into MixBridge by directly training with poisoned image pairs. This eliminates the need for the cumbersome modifications to stochastic differential equations required in previous studies, providing a flexible tool to study backdoor behavior for bridge models. However, a key question arises: can a single DSB model train multiple backdoor triggers? Unfortunately, our theory shows that when attempting this, the model ends up following the geometric mean of benign and backdoored distributions, leading to performance conflict across backdoor tasks. To overcome this, we propose a Divide-and-Merge strategy to mix different bridges, where models are independently pre-trained for each specific objective (Divide) and then integrated into a unified model (Merge). In addition, a Weight Reallocation Scheme (WRS) is also designed to enhance the stealthiness of MixBridge. Empirical studies across diverse generation tasks speak to the efficacy of MixBridge.
Abstract:Prompt tuning adapts Vision-Language Models like CLIP to open-world tasks with minimal training costs. In this direction, one typical paradigm evaluates model performance separately on known classes (i.e., base domain) and unseen classes (i.e., new domain). However, real-world scenarios require models to handle inputs without prior domain knowledge. This practical challenge has spurred the development of open-world prompt tuning, which demands a unified evaluation of two stages: 1) detecting whether an input belongs to the base or new domain (P1), and 2) classifying the sample into its correct class (P2). What's more, as domain distributions are generally unknown, a proper metric should be insensitive to varying base/new sample ratios (P3). However, we find that current metrics, including HM, overall accuracy, and AUROC, fail to satisfy these three properties simultaneously. To bridge this gap, we propose OpenworldAUC, a unified metric that jointly assesses detection and classification through pairwise instance comparisons. To optimize OpenworldAUC effectively, we introduce Gated Mixture-of-Prompts (GMoP), which employs domain-specific prompts and a gating mechanism to dynamically balance detection and classification. Theoretical guarantees ensure generalization of GMoP under practical conditions. Experiments on 15 benchmarks in open-world scenarios show GMoP achieves SOTA performance on OpenworldAUC and other metrics. We release the code at https://github.com/huacong/OpenworldAUC
Abstract:Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student model by minimizing the divergence between their output distributions, typically using forward Kullback-Leibler divergence (FKLD) or reverse KLD (RKLD). It has become an effective training paradigm due to the broader supervision information provided by the teacher distribution compared to one-hot labels. We identify that the core challenge in KD lies in balancing two mode-concentration effects: the \textbf{\textit{Hardness-Concentration}} effect, which refers to focusing on modes with large errors, and the \textbf{\textit{Confidence-Concentration}} effect, which refers to focusing on modes with high student confidence. Through an analysis of how probabilities are reassigned during gradient updates, we observe that these two effects are entangled in FKLD and RKLD, but in extreme forms. Specifically, both are too weak in FKLD, causing the student to fail to concentrate on the target class. In contrast, both are too strong in RKLD, causing the student to overly emphasize the target class while ignoring the broader distributional information from the teacher. To address this imbalance, we propose ABKD, a generic framework with $\alpha$-$\beta$-divergence. Our theoretical results show that ABKD offers a smooth interpolation between FKLD and RKLD, achieving an effective trade-off between these effects. Extensive experiments on 17 language/vision datasets with 12 teacher-student settings confirm its efficacy. The code is available at https://github.com/ghwang-s/abkd.
Abstract:Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
Abstract:Real-world datasets often follow a long-tailed distribution, making generalization to tail classes difficult. Recent methods resorted to long-tail variants of Sharpness-Aware Minimization (SAM), such as ImbSAM and CC-SAM, to improve generalization by flattening the loss landscape. However, these attempts face a trade-off between computational efficiency and control over the loss landscape. On the one hand, ImbSAM is efficient but offers only coarse control as it excludes head classes from the SAM process. On the other hand, CC-SAM provides fine-grained control through class-dependent perturbations but at the cost of efficiency due to multiple backpropagations. Seeing this dilemma, we introduce Focal-SAM, which assigns different penalties to class-wise sharpness, achieving fine-grained control without extra backpropagations, thus maintaining efficiency. Furthermore, we theoretically analyze Focal-SAM's generalization ability and derive a sharper generalization bound. Extensive experiments on both traditional and foundation models validate the effectiveness of Focal-SAM.
Abstract:Movie Dubbing aims to convert scripts into speeches that align with the given movie clip in both temporal and emotional aspects while preserving the vocal timbre of a given brief reference audio. Existing methods focus primarily on reducing the word error rate while ignoring the importance of lip-sync and acoustic quality. To address these issues, we propose a large language model (LLM) based flow matching architecture for dubbing, named FlowDubber, which achieves high-quality audio-visual sync and pronunciation by incorporating a large speech language model and dual contrastive aligning while achieving better acoustic quality via the proposed voice-enhanced flow matching than previous works. First, we introduce Qwen2.5 as the backbone of LLM to learn the in-context sequence from movie scripts and reference audio. Then, the proposed semantic-aware learning focuses on capturing LLM semantic knowledge at the phoneme level. Next, dual contrastive aligning (DCA) boosts mutual alignment with lip movement, reducing ambiguities where similar phonemes might be confused. Finally, the proposed Flow-based Voice Enhancing (FVE) improves acoustic quality in two aspects, which introduces an LLM-based acoustics flow matching guidance to strengthen clarity and uses affine style prior to enhance identity when recovering noise into mel-spectrograms via gradient vector field prediction. Extensive experiments demonstrate that our method outperforms several state-of-the-art methods on two primary benchmarks. The demos are available at {\href{https://galaxycong.github.io/LLM-Flow-Dubber/}{\textcolor{red}{https://galaxycong.github.io/LLM-Flow-Dubber/}}}.
Abstract:The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image. For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.
Abstract:Open-world object counting leverages the robust text-image alignment of pre-trained vision-language models (VLMs) to enable counting of arbitrary categories in images specified by textual queries. However, widely adopted naive fine-tuning strategies concentrate exclusively on text-image consistency for categories contained in training, which leads to limited generalizability for unseen categories. In this work, we propose a plug-and-play Semantic-Driven Visual Prompt Tuning framework (SDVPT) that transfers knowledge from the training set to unseen categories with minimal overhead in parameters and inference time. First, we introduce a two-stage visual prompt learning strategy composed of Category-Specific Prompt Initialization (CSPI) and Topology-Guided Prompt Refinement (TGPR). The CSPI generates category-specific visual prompts, and then TGPR distills latent structural patterns from the VLM's text encoder to refine these prompts. During inference, we dynamically synthesize the visual prompts for unseen categories based on the semantic correlation between unseen and training categories, facilitating robust text-image alignment for unseen categories. Extensive experiments integrating SDVPT with all available open-world object counting models demonstrate its effectiveness and adaptability across three widely used datasets: FSC-147, CARPK, and PUCPR+.