



Abstract:Large Language Models (LLMs) have catalyzed vibe coding, where users leverage LLMs to generate and iteratively refine code through natural language interactions until it passes their vibe check. Vibe check is tied to real-world human preference and goes beyond functionality: the solution should feel right, read cleanly, preserve intent, and remain correct. However, current code evaluation remains anchored to pass@k and captures only functional correctness, overlooking the non-functional instructions that users routinely apply. In this paper, we hypothesize that instruction following is the missing piece underlying vibe check that represents human preference in coding besides functional correctness. To quantify models' code instruction following capabilities with measurable signals, we present VeriCode, a taxonomy of 30 verifiable code instructions together with corresponding deterministic verifiers. We use the taxonomy to augment established evaluation suites, resulting in Vibe Checker, a testbed to assess both code instruction following and functional correctness. Upon evaluating 31 leading LLMs, we show that even the strongest models struggle to comply with multiple instructions and exhibit clear functional regression. Most importantly, a composite score of functional correctness and instruction following correlates the best with human preference, with the latter emerging as the primary differentiator on real-world programming tasks. Our work identifies core factors of the vibe check, providing a concrete path for benchmarking and developing models that better align with user preferences in coding.
Abstract:The rise of large language models (LLMs) has enabled the generation of highly persuasive spam reviews that closely mimic human writing. These reviews pose significant challenges for existing detection systems and threaten the credibility of online platforms. In this work, we first create three realistic LLM-generated spam review datasets using three distinct LLMs, each guided by product metadata and genuine reference reviews. Evaluations by GPT-4.1 confirm the high persuasion and deceptive potential of these reviews. To address this threat, we propose FraudSquad, a hybrid detection model that integrates text embeddings from a pre-trained language model with a gated graph transformer for spam node classification. FraudSquad captures both semantic and behavioral signals without relying on manual feature engineering or massive training resources. Experiments show that FraudSquad outperforms state-of-the-art baselines by up to 44.22% in precision and 43.01% in recall on three LLM-generated datasets, while also achieving promising results on two human-written spam datasets. Furthermore, FraudSquad maintains a modest model size and requires minimal labeled training data, making it a practical solution for real-world applications. Our contributions include new synthetic datasets, a practical detection framework, and empirical evidence highlighting the urgency of adapting spam detection to the LLM era. Our code and datasets are available at: https://anonymous.4open.science/r/FraudSquad-5389/.
Abstract:Large vision-language models (LVLMs) are increasingly deployed in globally distributed applications, such as tourism assistants, yet their ability to produce culturally appropriate responses remains underexplored. Existing multimodal safety benchmarks primarily focus on physical safety and overlook violations rooted in cultural norms, which can result in symbolic harm. To address this gap, we introduce CROSS, a benchmark designed to assess the cultural safety reasoning capabilities of LVLMs. CROSS includes 1,284 multilingual visually grounded queries from 16 countries, three everyday domains, and 14 languages, where cultural norm violations emerge only when images are interpreted in context. We propose CROSS-Eval, an intercultural theory-based framework that measures four key dimensions: cultural awareness, norm education, compliance, and helpfulness. Using this framework, we evaluate 21 leading LVLMs, including mixture-of-experts models and reasoning models. Results reveal significant cultural safety gaps: the best-performing model achieves only 61.79% in awareness and 37.73% in compliance. While some open-source models reach GPT-4o-level performance, they still fall notably short of proprietary models. Our results further show that increasing reasoning capacity improves cultural alignment but does not fully resolve the issue. To improve model performance, we develop two enhancement strategies: supervised fine-tuning with culturally grounded, open-ended data and preference tuning with contrastive response pairs that highlight safe versus unsafe behaviors. These methods substantially improve GPT-4o's cultural awareness (+60.14%) and compliance (+55.2%), while preserving general multimodal capabilities with minimal performance reduction on general multimodal understanding benchmarks.




Abstract:We study how well large language models (LLMs) explain their generations with rationales -- a set of tokens extracted from the input texts that reflect the decision process of LLMs. We examine LLM rationales extracted with two methods: 1) attribution-based methods that use attention or gradients to locate important tokens, and 2) prompting-based methods that guide LLMs to extract rationales using prompts. Through extensive experiments, we show that prompting-based rationales align better with human-annotated rationales than attribution-based rationales, and demonstrate reasonable alignment with humans even when model performance is poor. We additionally find that the faithfulness limitations of prompting-based methods, which are identified in previous work, may be linked to their collapsed predictions. By fine-tuning these models on the corresponding datasets, both prompting and attribution methods demonstrate improved faithfulness. Our study sheds light on more rigorous and fair evaluations of LLM rationales, especially for prompting-based ones.




Abstract:Complex multi-step reasoning tasks, such as solving mathematical problems or generating code, remain a significant hurdle for even the most advanced large language models (LLMs). Verifying LLM outputs with an Outcome Reward Model (ORM) is a standard inference-time technique aimed at enhancing the reasoning performance of LLMs. However, this still proves insufficient for reasoning tasks with a lengthy or multi-hop reasoning chain, where the intermediate outcomes are neither properly rewarded nor penalized. Process supervision addresses this limitation by assigning intermediate rewards during the reasoning process. To date, the methods used to collect process supervision data have relied on either human annotation or per-step Monte Carlo estimation, both prohibitively expensive to scale, thus hindering the broad application of this technique. In response to this challenge, we propose a novel divide-and-conquer style Monte Carlo Tree Search (MCTS) algorithm named \textit{OmegaPRM} for the efficient collection of high-quality process supervision data. This algorithm swiftly identifies the first error in the Chain of Thought (CoT) with binary search and balances the positive and negative examples, thereby ensuring both efficiency and quality. As a result, we are able to collect over 1.5 million process supervision annotations to train a Process Reward Model (PRM). Utilizing this fully automated process supervision alongside the weighted self-consistency algorithm, we have enhanced the instruction tuned Gemini Pro model's math reasoning performance, achieving a 69.4\% success rate on the MATH benchmark, a 36\% relative improvement from the 51\% base model performance. Additionally, the entire process operates without any human intervention, making our method both financially and computationally cost-effective compared to existing methods.




Abstract:Recent Text-to-Image (T2I) generation models such as Stable Diffusion and Imagen have made significant progress in generating high-resolution images based on text descriptions. However, many generated images still suffer from issues such as artifacts/implausibility, misalignment with text descriptions, and low aesthetic quality. Inspired by the success of Reinforcement Learning with Human Feedback (RLHF) for large language models, prior works collected human-provided scores as feedback on generated images and trained a reward model to improve the T2I generation. In this paper, we enrich the feedback signal by (i) marking image regions that are implausible or misaligned with the text, and (ii) annotating which words in the text prompt are misrepresented or missing on the image. We collect such rich human feedback on 18K generated images and train a multimodal transformer to predict the rich feedback automatically. We show that the predicted rich human feedback can be leveraged to improve image generation, for example, by selecting high-quality training data to finetune and improve the generative models, or by creating masks with predicted heatmaps to inpaint the problematic regions. Notably, the improvements generalize to models (Muse) beyond those used to generate the images on which human feedback data were collected (Stable Diffusion variants).




Abstract:Despite their wide-spread success, Text-to-Image models (T2I) still struggle to produce images that are both aesthetically pleasing and faithful to the user's input text. We introduce DreamSync, a model-agnostic training algorithm by design that improves T2I models to be faithful to the text input. DreamSync builds off a recent insight from TIFA's evaluation framework -- that large vision-language models (VLMs) can effectively identify the fine-grained discrepancies between generated images and the text inputs. DreamSync uses this insight to train T2I models without any labeled data; it improves T2I models using its own generations. First, it prompts the model to generate several candidate images for a given input text. Then, it uses two VLMs to select the best generation: a Visual Question Answering model that measures the alignment of generated images to the text, and another that measures the generation's aesthetic quality. After selection, we use LoRA to iteratively finetune the T2I model to guide its generation towards the selected best generations. DreamSync does not need any additional human annotation. model architecture changes, or reinforcement learning. Despite its simplicity, DreamSync improves both the semantic alignment and aesthetic appeal of two diffusion-based T2I models, evidenced by multiple benchmarks (+1.7% on TIFA, +2.9% on DSG1K, +3.4% on VILA aesthetic) and human evaluation.




Abstract:Large Language Models (LLMs) have recently emerged as an effective tool to assist individuals in writing various types of content, including professional documents such as recommendation letters. Though bringing convenience, this application also introduces unprecedented fairness concerns. Model-generated reference letters might be directly used by users in professional scenarios. If underlying biases exist in these model-constructed letters, using them without scrutinization could lead to direct societal harms, such as sabotaging application success rates for female applicants. In light of this pressing issue, it is imminent and necessary to comprehensively study fairness issues and associated harms in this real-world use case. In this paper, we critically examine gender biases in LLM-generated reference letters. Drawing inspiration from social science findings, we design evaluation methods to manifest biases through 2 dimensions: (1) biases in language style and (2) biases in lexical content. We further investigate the extent of bias propagation by analyzing the hallucination bias of models, a term that we define to be bias exacerbation in model-hallucinated contents. Through benchmarking evaluation on 2 popular LLMs- ChatGPT and Alpaca, we reveal significant gender biases in LLM-generated recommendation letters. Our findings not only warn against using LLMs for this application without scrutinization, but also illuminate the importance of thoroughly studying hidden biases and harms in LLM-generated professional documents.




Abstract:While recent studies have looked into the abilities of large language models in various benchmark tasks, including question generation, reading comprehension, multilingual and etc, there have been few studies looking into the controllability of large language models on generation tasks. We present an extensive analysis of various benchmarks including a sentence planning benchmark with different granularities. After comparing large language models against state-of-the-start finetuned smaller models, we present a spectrum showing large language models falling behind, are comparable, or exceed the ability of smaller models. We conclude that **large language models struggle at meeting fine-grained hard constraints**.




Abstract:Large language models are trained in two stages: (1) unsupervised pretraining from raw text, to learn general-purpose representations, and (2) large scale instruction tuning and reinforcement learning, to better align to end tasks and user preferences. We measure the relative importance of these two stages by training LIMA, a 65B parameter LLaMa language model fine-tuned with the standard supervised loss on only 1,000 carefully curated prompts and responses, without any reinforcement learning or human preference modeling. LIMA demonstrates remarkably strong performance, learning to follow specific response formats from only a handful of examples in the training data, including complex queries that range from planning trip itineraries to speculating about alternate history. Moreover, the model tends to generalize well to unseen tasks that did not appear in the training data. In a controlled human study, responses from LIMA are either equivalent or strictly preferred to GPT-4 in 43% of cases; this statistic is as high as 58% when compared to Bard and 65% versus DaVinci003, which was trained with human feedback. Taken together, these results strongly suggest that almost all knowledge in large language models is learned during pretraining, and only limited instruction tuning data is necessary to teach models to produce high quality output.