Alert button
Picture for Juntao Li

Juntao Li

Alert button

KBioXLM: A Knowledge-anchored Biomedical Multilingual Pretrained Language Model

Nov 20, 2023
Lei Geng, Xu Yan, Ziqiang Cao, Juntao Li, Wenjie Li, Sujian Li, Xinjie Zhou, Yang Yang, Jun Zhang

Most biomedical pretrained language models are monolingual and cannot handle the growing cross-lingual requirements. The scarcity of non-English domain corpora, not to mention parallel data, poses a significant hurdle in training multilingual biomedical models. Since knowledge forms the core of domain-specific corpora and can be translated into various languages accurately, we propose a model called KBioXLM, which transforms the multilingual pretrained model XLM-R into the biomedical domain using a knowledge-anchored approach. We achieve a biomedical multilingual corpus by incorporating three granularity knowledge alignments (entity, fact, and passage levels) into monolingual corpora. Then we design three corresponding training tasks (entity masking, relation masking, and passage relation prediction) and continue training on top of the XLM-R model to enhance its domain cross-lingual ability. To validate the effectiveness of our model, we translate the English benchmarks of multiple tasks into Chinese. Experimental results demonstrate that our model significantly outperforms monolingual and multilingual pretrained models in cross-lingual zero-shot and few-shot scenarios, achieving improvements of up to 10+ points. Our code is publicly available at https://github.com/ngwlh-gl/KBioXLM.

Viaarxiv icon

Beyond Hard Samples: Robust and Effective Grammatical Error Correction with Cycle Self-Augmenting

Oct 23, 2023
Zecheng Tang, Kaifeng Qi, Juntao Li, Min Zhang

Recent studies have revealed that grammatical error correction methods in the sequence-to-sequence paradigm are vulnerable to adversarial attack, and simply utilizing adversarial examples in the pre-training or post-training process can significantly enhance the robustness of GEC models to certain types of attack without suffering too much performance loss on clean data. In this paper, we further conduct a thorough robustness evaluation of cutting-edge GEC methods for four different types of adversarial attacks and propose a simple yet very effective Cycle Self-Augmenting (CSA) method accordingly. By leveraging the augmenting data from the GEC models themselves in the post-training process and introducing regularization data for cycle training, our proposed method can effectively improve the model robustness of well-trained GEC models with only a few more training epochs as an extra cost. More concretely, further training on the regularization data can prevent the GEC models from over-fitting on easy-to-learn samples and thus can improve the generalization capability and robustness towards unseen data (adversarial noise/samples). Meanwhile, the self-augmented data can provide more high-quality pseudo pairs to improve model performance on the original testing data. Experiments on four benchmark datasets and seven strong models indicate that our proposed training method can significantly enhance the robustness of four types of attacks without using purposely built adversarial examples in training. Evaluation results on clean data further confirm that our proposed CSA method significantly improves the performance of four baselines and yields nearly comparable results with other state-of-the-art models. Our code is available at https://github.com/ZetangForward/CSA-GEC.

Viaarxiv icon

G-SPEED: General SParse Efficient Editing MoDel

Oct 16, 2023
Haoke Zhang, Yue Wang, Juntao Li, Xiabing Zhou, Min Zhang

Figure 1 for G-SPEED: General SParse Efficient Editing MoDel
Figure 2 for G-SPEED: General SParse Efficient Editing MoDel
Figure 3 for G-SPEED: General SParse Efficient Editing MoDel
Figure 4 for G-SPEED: General SParse Efficient Editing MoDel

Large Language Models~(LLMs) have demonstrated incredible capabilities in understanding, generating, and manipulating languages. Through human-model interactions, LLMs can automatically understand human-issued instructions and output the expected contents, which can significantly increase working efficiency. In various types of real-world demands, editing-oriented tasks account for a considerable proportion, which involves an interactive process that entails the continuous refinement of existing texts to meet specific criteria. Due to the need for multi-round human-model interaction and the generation of complicated editing tasks, there is an emergent need for efficient general editing models. In this paper, we propose \underline{\textbf{G}}eneral \underline{\textbf{SP}}arse \underline{\textbf{E}}fficient \underline{\textbf{E}}diting Mo\underline{\textbf{D}}el~(\textbf{G-SPEED}), which can fulfill diverse editing requirements through a single model while maintaining low computational costs. Specifically, we first propose a novel unsupervised text editing data clustering algorithm to deal with the data scarcity problem. Subsequently, we introduce a sparse editing model architecture to mitigate the inherently limited learning capabilities of small language models. The experimental outcomes indicate that G-SPEED, with its 508M parameters, can surpass LLMs equipped with 175B parameters. Our code and model checkpoints are available at \url{https://github.com/Banner-Z/G-SPEED}.

* Accepted to the Findings of EMNLP 2023 
Viaarxiv icon

OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch

Oct 01, 2023
Juntao Li, Zecheng Tang, Yuyang Ding, Pinzheng Wang, Pei Guo, Wangjie You, Dan Qiao, Wenliang Chen, Guohong Fu, Qiaoming Zhu, Guodong Zhou, Min Zhang

Figure 1 for OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch
Figure 2 for OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch
Figure 3 for OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch
Figure 4 for OpenBA: An Open-sourced 15B Bilingual Asymmetric seq2seq Model Pre-trained from Scratch

Large language models (LLMs) with billions of parameters have demonstrated outstanding performance on various natural language processing tasks. This report presents OpenBA, an open-sourced 15B bilingual asymmetric seq2seq model, to contribute an LLM variant to the Chinese-oriented open-source model community. We enhance OpenBA with effective and efficient techniques as well as adopt a three-stage training strategy to train the model from scratch. Our solution can also achieve very competitive performance with only 380B tokens, which is better than LLaMA-70B on the BELEBELE benchmark, BLOOM-176B on the MMLU benchmark, GLM-130B on the C-Eval (hard) benchmark. This report provides the main details to pre-train an analogous model, including pre-training data processing, Bilingual Flan data collection, the empirical observations that inspire our model architecture design, training objectives of different stages, and other enhancement techniques. Additionally, we also provide the fine-tuning details of OpenBA on four downstream tasks. We have refactored our code to follow the design principles of the Huggingface Transformers Library, making it more convenient for developers to use, and released checkpoints of different training stages at https://huggingface.co/openBA. More details of our project are available at https://github.com/OpenNLG/openBA.git.

Viaarxiv icon

LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models

Sep 19, 2023
Zecheng Tang, Chenfei Wu, Juntao Li, Nan Duan

Figure 1 for LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models
Figure 2 for LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models
Figure 3 for LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models
Figure 4 for LayoutNUWA: Revealing the Hidden Layout Expertise of Large Language Models

Graphic layout generation, a growing research field, plays a significant role in user engagement and information perception. Existing methods primarily treat layout generation as a numerical optimization task, focusing on quantitative aspects while overlooking the semantic information of layout, such as the relationship between each layout element. In this paper, we propose LayoutNUWA, the first model that treats layout generation as a code generation task to enhance semantic information and harness the hidden layout expertise of large language models~(LLMs). More concretely, we develop a Code Instruct Tuning (CIT) approach comprising three interconnected modules: 1) the Code Initialization (CI) module quantifies the numerical conditions and initializes them as HTML code with strategically placed masks; 2) the Code Completion (CC) module employs the formatting knowledge of LLMs to fill in the masked portions within the HTML code; 3) the Code Rendering (CR) module transforms the completed code into the final layout output, ensuring a highly interpretable and transparent layout generation procedure that directly maps code to a visualized layout. We attain significant state-of-the-art performance (even over 50\% improvements) on multiple datasets, showcasing the strong capabilities of LayoutNUWA. Our code is available at https://github.com/ProjectNUWA/LayoutNUWA.

Viaarxiv icon

Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models

Aug 24, 2023
Yue Wang, Xinrui Wang, Juntao Li, Jinxiong Chang, Qishen Zhang, Zhongyi Liu, Guannan Zhang, Min Zhang

Figure 1 for Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models
Figure 2 for Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models
Figure 3 for Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models
Figure 4 for Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models

Instruction tuning is instrumental in enabling Large Language Models~(LLMs) to follow user instructions to complete various open-domain tasks. The success of instruction tuning depends on the availability of high-quality instruction data. Owing to the exorbitant cost and substandard quality of human annotation, recent works have been deeply engaged in the exploration of the utilization of powerful closed-source models to generate instruction data automatically. However, these methods carry potential risks arising from the usage requirements of powerful closed-source models, which strictly forbid the utilization of their outputs to develop machine learning models. To deal with this problem, in this work, we explore alternative approaches to generate high-quality instruction data that do not rely on closed-source models. Our exploration includes an investigation of various existing instruction generation methods, culminating in the integration of the most efficient variant with two novel strategies to enhance the quality further. Evaluation results from two benchmarks and the GPT-4 model demonstrate the effectiveness of our generated instruction data, which can outperform Alpaca, a method reliant on closed-source models. We hope that more progress can be achieved in generating high-quality instruction data without using closed-source models.

Viaarxiv icon

GameEval: Evaluating LLMs on Conversational Games

Aug 19, 2023
Dan Qiao, Chenfei Wu, Yaobo Liang, Juntao Li, Nan Duan

Figure 1 for GameEval: Evaluating LLMs on Conversational Games
Figure 2 for GameEval: Evaluating LLMs on Conversational Games
Figure 3 for GameEval: Evaluating LLMs on Conversational Games
Figure 4 for GameEval: Evaluating LLMs on Conversational Games

The rapid advancements in large language models (LLMs) have presented challenges in evaluating those models. Existing evaluation methods are either reference-based or preference based, which inevitably need human intervention or introduce test bias caused by evaluator models. In this paper, we propose GameEval, a novel approach to evaluating LLMs through goal-driven conversational games, overcoming the limitations of previous methods. GameEval treats LLMs as game players and assigns them distinct roles with specific goals achieved by launching conversations of various forms, including discussion, question answering, and voting. We design three unique games with cooperative or adversarial objectives, accompanied by corresponding evaluation metrics, to show how this new paradigm comprehensively evaluates model performance.Through extensive experiments, we show that GameEval can effectively differentiate the capabilities of various LLMs, providing a comprehensive assessment of their integrated abilities to solve complex problems. Our public anonymous code is available at https://github.com/GameEval/GameEval.

Viaarxiv icon

Detoxify Language Model Step-by-Step

Aug 16, 2023
Zecheng Tang, Keyan Zhou, Pinzheng Wang, Yuyang Ding, Juntao Li, Minzhang

Figure 1 for Detoxify Language Model Step-by-Step
Figure 2 for Detoxify Language Model Step-by-Step
Figure 3 for Detoxify Language Model Step-by-Step
Figure 4 for Detoxify Language Model Step-by-Step

Detoxification for LLMs is challenging since it requires models to avoid generating harmful content while maintaining the generation capability. To ensure the safety of generations, previous detoxification methods detoxify the models by changing the data distributions or constraining the generations from different aspects in a single-step manner. However, these approaches will dramatically affect the generation quality of LLMs, e.g., discourse coherence and semantic consistency, since language models tend to generate along the toxic prompt while detoxification methods work in the opposite direction. To handle such a conflict, we decompose the detoxification process into different sub-steps, where the detoxification is concentrated in the input stage and the subsequent continual generation is based on the non-toxic prompt. Besides, we also calibrate the strong reasoning ability of LLMs by designing a Detox-Chain to connect the above sub-steps in an orderly manner, which allows LLMs to detoxify the text step-by-step. Automatic and human evaluation on two benchmarks reveals that by training with Detox-Chain, six LLMs scaling from 1B to 33B can obtain significant detoxification and generation improvement. Our code and data are available at https://github.com/CODINNLG/Detox-CoT. Warning: examples in the paper may contain uncensored offensive content.

Viaarxiv icon

AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation

May 19, 2023
Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao Li, Zhongyu Wei, Jian Guo, Nan Duan, Weizhu Chen

Figure 1 for AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
Figure 2 for AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
Figure 3 for AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation
Figure 4 for AR-Diffusion: Auto-Regressive Diffusion Model for Text Generation

Diffusion models have gained significant attention in the realm of image generation due to their exceptional performance. Their success has been recently expanded to text generation via generating all tokens within a sequence concurrently. However, natural language exhibits a far more pronounced sequential dependency in comparison to images, and the majority of existing language models are trained with a left-to-right auto-regressive approach. To account for the inherent sequential characteristic of natural language, we introduce Auto-Regressive Diffusion (AR-Diffusion). AR-Diffusion ensures that the generation of tokens on the right depends on the generated ones on the left, a mechanism achieved through employing a dynamic number of denoising steps that vary based on token position. This results in tokens on the left undergoing fewer denoising steps than those on the right, thereby enabling them to generate earlier and subsequently influence the generation of tokens on the right. In a series of experiments on various text generation tasks, including text summarization, machine translation, and common sense generation, AR-Diffusion clearly demonstrated its superiority over existing diffusion language models and that it can be $100\times\sim600\times$ faster when achieving comparable results. Our code is available at https://github.com/microsoft/ProphetNet/tree/master/AR-diffusion.

Viaarxiv icon