Abstract:Jailbreak attacks have been observed to largely fail against recent reasoning models enhanced by Chain-of-Thought (CoT) reasoning. However, the underlying mechanism remains underexplored, and relying solely on reasoning capacity may raise security concerns. In this paper, we try to answer the question: Does CoT reasoning really reduce harmfulness from jailbreaking? Through rigorous theoretical analysis, we demonstrate that CoT reasoning has dual effects on jailbreaking harmfulness. Based on the theoretical insights, we propose a novel jailbreak method, FicDetail, whose practical performance validates our theoretical findings.
Abstract:While large language models (LLMs) can solve PhD-level reasoning problems over long context inputs, they still struggle with a seemingly simpler task: following explicit length instructions-e.g., write a 10,000-word novel. Additionally, models often generate far too short outputs, terminate prematurely, or even refuse the request. Existing benchmarks focus primarily on evaluating generations quality, but often overlook whether the generations meet length constraints. To this end, we introduce Length Instruction Following Evaluation Benchmark (LIFEBench) to comprehensively evaluate LLMs' ability to follow length instructions across diverse tasks and a wide range of specified lengths. LIFEBench consists of 10,800 instances across 4 task categories in both English and Chinese, covering length constraints ranging from 16 to 8192 words. We evaluate 26 widely-used LLMs and find that most models reasonably follow short-length instructions but deteriorate sharply beyond a certain threshold. Surprisingly, almost all models fail to reach the vendor-claimed maximum output lengths in practice, as further confirmed by our evaluations extending up to 32K words. Even long-context LLMs, despite their extended input-output windows, counterintuitively fail to improve length-instructions following. Notably, Reasoning LLMs outperform even specialized long-text generation models, achieving state-of-the-art length following. Overall, LIFEBench uncovers fundamental limitations in current LLMs' length instructions following ability, offering critical insights for future progress.
Abstract:Recent breakthroughs in artificial intelligence (AI) have brought about increasingly capable systems that demonstrate remarkable abilities in reasoning, language understanding, and problem-solving. These advancements have prompted a renewed examination of AI awareness, not as a philosophical question of consciousness, but as a measurable, functional capacity. In this review, we explore the emerging landscape of AI awareness, which includes meta-cognition (the ability to represent and reason about its own state), self-awareness (recognizing its own identity, knowledge, limitations, inter alia), social awareness (modeling the knowledge, intentions, and behaviors of other agents), and situational awareness (assessing and responding to the context in which it operates). First, we draw on insights from cognitive science, psychology, and computational theory to trace the theoretical foundations of awareness and examine how the four distinct forms of AI awareness manifest in state-of-the-art AI. Next, we systematically analyze current evaluation methods and empirical findings to better understand these manifestations. Building on this, we explore how AI awareness is closely linked to AI capabilities, demonstrating that more aware AI agents tend to exhibit higher levels of intelligent behaviors. Finally, we discuss the risks associated with AI awareness, including key topics in AI safety, alignment, and broader ethical concerns. AI awareness is a double-edged sword: it improves general capabilities, i.e., reasoning, safety, while also raises concerns around misalignment and societal risks, demanding careful oversight as AI capabilities grow. On the whole, our interdisciplinary review provides a roadmap for future research and aims to clarify the role of AI awareness in the ongoing development of intelligent machines.
Abstract:Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent's Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents. We will release our code upon request.
Abstract:Retrieval-augmented generation (RAG) is a promising approach to address the limitations of fixed knowledge in large language models (LLMs). However, current benchmarks for evaluating RAG systems suffer from two key deficiencies: (1) they fail to adequately measure LLMs' capability in handling long-context retrieval due to a lack of datasets that reflect the characteristics of retrieved documents, and (2) they lack a comprehensive evaluation method for assessing LLMs' ability to generate long-form responses that effectively exploits retrieved information. To address these shortcomings, we introduce the Long$^2$RAG benchmark and the Key Point Recall (KPR) metric. Long$^2$RAG comprises 280 questions spanning 10 domains and across 8 question categories, each associated with 5 retrieved documents with an average length of 2,444 words. KPR evaluates the extent to which LLMs incorporate key points extracted from the retrieved documents into their generated responses, providing a more nuanced assessment of their ability to exploit retrieved information.
Abstract:Translating lyrics for musicals presents unique challenges due to the need to ensure high translation quality while adhering to singability requirements such as length and rhyme. Existing song translation approaches often prioritize these singability constraints at the expense of translation quality, which is crucial for musicals. This paper aims to enhance translation quality while maintaining key singability features. Our method consists of three main components. First, we create a dataset to train reward models for the automatic evaluation of translation quality. Second, to enhance both singability and translation quality, we implement a two-stage training process with filtering techniques. Finally, we introduce an inference-time optimization framework for translating entire songs. Extensive experiments, including both automatic and human evaluations, demonstrate significant improvements over baseline methods and validate the effectiveness of each component in our approach.
Abstract:Large language models (LLMs) achieve state-of-the-art performance on multiple language tasks, yet their safety guardrails can be circumvented, leading to harmful generations. In light of this, recent research on safety mechanisms has emerged, revealing that when safety representations or component are suppressed, the safety capability of LLMs are compromised. However, existing research tends to overlook the safety impact of multi-head attention mechanisms, despite their crucial role in various model functionalities. Hence, in this paper, we aim to explore the connection between standard attention mechanisms and safety capability to fill this gap in the safety-related mechanistic interpretability. We propose a novel metric which tailored for multi-head attention, the Safety Head ImPortant Score (Ships), to assess the individual heads' contributions to model safety. Based on this, we generalize Ships to the dataset level and further introduce the Safety Attention Head AttRibution Algorithm (Sahara) to attribute the critical safety attention heads inside the model. Our findings show that the special attention head has a significant impact on safety. Ablating a single safety head allows aligned model (e.g., Llama-2-7b-chat) to respond to 16 times more harmful queries, while only modifying 0.006% of the parameters, in contrast to the ~ 5% modification required in previous studies. More importantly, we demonstrate that attention heads primarily function as feature extractors for safety and models fine-tuned from the same base model exhibit overlapping safety heads through comprehensive experiments. Together, our attribution approach and findings provide a novel perspective for unpacking the black box of safety mechanisms within large models.
Abstract:The rise of large language models (LLMs) has enabled us to seek answers to inherently debatable questions on LLM chatbots, necessitating a reliable way to evaluate their ability. However, traditional QA benchmarks assume fixed answers are inadequate for this purpose. To address this, we introduce DebateQA, a dataset of 2,941 debatable questions, each accompanied by multiple human-annotated partial answers that capture a variety of perspectives. We develop two metrics: Perspective Diversity, which evaluates the comprehensiveness of perspectives, and Dispute Awareness, which assesses if the LLM acknowledges the question's debatable nature. Experiments demonstrate that both metrics align with human preferences and are stable across different underlying models. Using DebateQA with two metrics, we assess 12 popular LLMs and retrieval-augmented generation methods. Our findings reveal that while LLMs generally excel at recognizing debatable issues, their ability to provide comprehensive answers encompassing diverse perspectives varies considerably.
Abstract:The risk of harmful content generated by large language models (LLMs) becomes a critical concern. This paper presents a systematic study on assessing and improving LLMs' capability to perform the task of \textbf{course-correction}, \ie, the model can steer away from generating harmful content autonomously. To start with, we introduce the \textsc{C$^2$-Eval} benchmark for quantitative assessment and analyze 10 popular LLMs, revealing varying proficiency of current safety-tuned LLMs in course-correction. To improve, we propose fine-tuning LLMs with preference learning, emphasizing the preference for timely course-correction. Using an automated pipeline, we create \textsc{C$^2$-Syn}, a synthetic dataset with 750K pairwise preferences, to teach models the concept of timely course-correction through data-driven preference learning. Experiments on 2 LLMs, \textsc{Llama2-Chat 7B} and \textsc{Qwen2 7B}, show that our method effectively enhances course-correction skills without affecting general performance. Additionally, it effectively improves LLMs' safety, particularly in resisting jailbreak attacks.
Abstract:The common toxicity and societal bias in contents generated by large language models (LLMs) necessitate strategies to reduce harm. Present solutions often demand white-box access to the model or substantial training, which is impractical for cutting-edge commercial LLMs. Moreover, prevailing prompting methods depend on external tool feedback and fail to simultaneously lessen toxicity and bias. Motivated by social psychology principles, we propose a novel strategy named \textbf{perspective-taking prompting (\textsc{PeT})} that inspires LLMs to integrate diverse human perspectives and self-regulate their responses. This self-correction mechanism can significantly diminish toxicity (up to $89\%$) and bias (up to $73\%$) in LLMs' responses. Rigorous evaluations and ablation studies are conducted on two commercial LLMs (ChatGPT and GLM) and three open-source LLMs, revealing \textsc{PeT}'s superiority in producing less harmful responses, outperforming five strong baselines.