Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Covid-19 classification with deep neural network and belief functions

Jan 18, 2021
Ling Huang, Su Ruan, Thierry Denoeux

* medical image, Covid-19, belief function, BIHI conference 

  Access Paper or Ask Questions

Modeling Heterogeneous Statistical Patterns in High-dimensional Data by Adversarial Distributions: An Unsupervised Generative Framework

Dec 15, 2020
Han Zhang, Wenhao Zheng, Charley Chen, Kevin Gao, Yao Hu, Ling Huang, Wei Xu

  Access Paper or Ask Questions

DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System

Jan 15, 2019
Zhi-Hong Deng, Ling Huang, Chang-Dong Wang, Jian-Huang Lai, Philip S. Yu

  Access Paper or Ask Questions

DIAG-NRE: A Deep Pattern Diagnosis Framework for Distant Supervision Neural Relation Extraction

Nov 06, 2018
Shun Zheng, Peilin Yu, Lu Chen, Ling Huang, Wei Xu

  Access Paper or Ask Questions

Online Semi-Supervised Learning on Quantized Graphs

Mar 15, 2012
Michal Valko, Branislav Kveton, Ling Huang, Daniel Ting

* Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010) 

  Access Paper or Ask Questions

An Analysis of the Convergence of Graph Laplacians

Jan 28, 2011
Daniel Ting, Ling Huang, Michael Jordan

  Access Paper or Ask Questions

Mantis: Predicting System Performance through Program Analysis and Modeling

Sep 30, 2010
Byung-Gon Chun, Ling Huang, Sangmin Lee, Petros Maniatis, Mayur Naik

  Access Paper or Ask Questions

Query Strategies for Evading Convex-Inducing Classifiers

Jul 03, 2010
Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Steven J. Lee, Satish Rao, J. D. Tygar

  Access Paper or Ask Questions

Near-Optimal Evasion of Convex-Inducing Classifiers

Mar 14, 2010
Blaine Nelson, Benjamin I. P. Rubinstein, Ling Huang, Anthony D. Joseph, Shing-hon Lau, Steven J. Lee, Satish Rao, Anthony Tran, J. D. Tygar

* 8 pages; to appear at AISTATS'2010 

  Access Paper or Ask Questions

Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning

Nov 30, 2009
Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, Nina Taft

* 21 pages, 1 figure 

  Access Paper or Ask Questions