Abstract:We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 95\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
Abstract:Warning: This paper contains examples of harmful language and images. Reader discretion is advised. Recently, vision-language models have demonstrated increasing influence in morally sensitive domains such as autonomous driving and medical analysis, owing to their powerful multimodal reasoning capabilities. As these models are deployed in high-stakes real-world applications, it is of paramount importance to ensure that their outputs align with human moral values and remain within moral boundaries. However, existing work on moral alignment either focuses solely on textual modalities or relies heavily on AI-generated images, leading to distributional biases and reduced realism. To overcome these limitations, we introduce MORALISE, a comprehensive benchmark for evaluating the moral alignment of vision-language models (VLMs) using diverse, expert-verified real-world data. We begin by proposing a comprehensive taxonomy of 13 moral topics grounded in Turiel's Domain Theory, spanning the personal, interpersonal, and societal moral domains encountered in everyday life. Built on this framework, we manually curate 2,481 high-quality image-text pairs, each annotated with two fine-grained labels: (1) topic annotation, identifying the violated moral topic(s), and (2) modality annotation, indicating whether the violation arises from the image or the text. For evaluation, we encompass two tasks, \textit{moral judgment} and \textit{moral norm attribution}, to assess models' awareness of moral violations and their reasoning ability on morally salient content. Extensive experiments on 19 popular open- and closed-source VLMs show that MORALISE poses a significant challenge, revealing persistent moral limitations in current state-of-the-art models. The full benchmark is publicly available at https://huggingface.co/datasets/Ze1025/MORALISE.
Abstract:Legal rules encompass not only codified statutes but also implicit adjudicatory principles derived from precedents that contain discretionary norms, social morality, and policy. While computational legal research has advanced in applying established rules to cases, inducing legal rules from judicial decisions remains understudied, constrained by limitations in model inference efficacy and symbolic reasoning capability. The advent of Large Language Models (LLMs) offers unprecedented opportunities for automating the extraction of such latent principles, yet progress is stymied by the absence of formal task definitions, benchmark datasets, and methodologies. To address this gap, we formalize Legal Rule Induction (LRI) as the task of deriving concise, generalizable doctrinal rules from sets of analogous precedents, distilling their shared preconditions, normative behaviors, and legal consequences. We introduce the first LRI benchmark, comprising 5,121 case sets (38,088 Chinese cases in total) for model tuning and 216 expert-annotated gold test sets. Experimental results reveal that: 1) State-of-the-art LLMs struggle with over-generalization and hallucination; 2) Training on our dataset markedly enhances LLMs capabilities in capturing nuanced rule patterns across similar cases.
Abstract:Data Assimilation (DA) plays a critical role in atmospheric science by reconstructing spatially continous estimates of the system state, which serves as initial conditions for scientific analysis. While recent advances in diffusion models have shown great potential for DA tasks, most existing approaches remain purely data-driven and often overlook the physical laws that govern complex atmospheric dynamics. As a result, they may yield physically inconsistent reconstructions that impair downstream applications. To overcome this limitation, we propose PhyDA, a physics-guided diffusion framework designed to ensure physical coherence in atmospheric data assimilation. PhyDA introduces two key components: (1) a Physically Regularized Diffusion Objective that integrates physical constraints into the training process by penalizing deviations from known physical laws expressed as partial differential equations, and (2) a Virtual Reconstruction Encoder that bridges observational sparsity for structured latent representations, further enhancing the model's ability to infer complete and physically coherent states. Experiments on the ERA5 reanalysis dataset demonstrate that PhyDA achieves superior accuracy and better physical plausibility compared to state-of-the-art baselines. Our results emphasize the importance of combining generative modeling with domain-specific physical knowledge and show that PhyDA offers a promising direction for improving real-world data assimilation systems.
Abstract:Graph Convolutional Networks (GCNs) are widely used to improve recommendation accuracy and performance by effectively learning the representations of user and item nodes. However, two major challenges remain: (1) the lack of further optimization in the graph representation structure and (2) insufficient attention given to the varying contributions of different convolutional layers.This paper proposes SAGCN, a distance-based adaptive hierarchical aggregation method that refines the aggregation process through differentiated representation metrics. SAGCN introduces a detailed approach to multilayer information aggregation and representation space optimization, enabling the model to learn hierarchical embedding weights based on the distance between hierarchical representations. This innovation allows for more precise cross-layer information aggregation, improves the model's ability to capture hierarchical embeddings, and optimizes the representation space structure. Additionally, the objective loss function is refined to better align with recommendation tasks.Extensive experiments conducted on four real-world datasets demonstrate significant improvements, including over a 5% increase on Yelp and a 5.58% increase in Recall@10 on the ML_1M dataset.
Abstract:Designing effective collaboration structure for multi-agent LLM systems to enhance collective reasoning is crucial yet remains under-explored. In this paper, we systematically investigate how collaborative reasoning performance is affected by three key design dimensions: (1) Expertise-Domain Alignment, (2) Collaboration Paradigm (structured workflow vs. diversity-driven integration), and (3) System Scale. Our findings reveal that expertise alignment benefits are highly domain-contingent, proving most effective for contextual reasoning tasks. Furthermore, collaboration focused on integrating diverse knowledge consistently outperforms rigid task decomposition. Finally, we empirically explore the impact of scaling the multi-agent system with expertise specialization and study the computational trade off, highlighting the need for more efficient communication protocol design. This work provides concrete guidelines for configuring specialized multi-agent system and identifies critical architectural trade-offs and bottlenecks for scalable multi-agent reasoning. The code will be made available upon acceptance.
Abstract:Actor-critic algorithms have become a cornerstone in reinforcement learning (RL), leveraging the strengths of both policy-based and value-based methods. Despite recent progress in understanding their statistical efficiency, no existing work has successfully learned an $\epsilon$-optimal policy with a sample complexity of $O(1/\epsilon^2)$ trajectories with general function approximation when strategic exploration is necessary. We address this open problem by introducing a novel actor-critic algorithm that attains a sample-complexity of $O(dH^5 \log|\mathcal{A}|/\epsilon^2 + d H^4 \log|\mathcal{F}|/ \epsilon^2)$ trajectories, and accompanying $\sqrt{T}$ regret when the Bellman eluder dimension $d$ does not increase with $T$ at more than a $\log T$ rate. Here, $\mathcal{F}$ is the critic function class, $\mathcal{A}$ is the action space, and $H$ is the horizon in the finite horizon MDP setting. Our algorithm integrates optimism, off-policy critic estimation targeting the optimal Q-function, and rare-switching policy resets. We extend this to the setting of Hybrid RL, showing that initializing the critic with offline data yields sample efficiency gains compared to purely offline or online RL. Further, utilizing access to offline data, we provide a \textit{non-optimistic} provably efficient actor-critic algorithm that only additionally requires $N_{\text{off}} \geq c_{\text{off}}^*dH^4/\epsilon^2$ in exchange for omitting optimism, where $c_{\text{off}}^*$ is the single-policy concentrability coefficient and $N_{\text{off}}$ is the number of offline samples. This addresses another open problem in the literature. We further provide numerical experiments to support our theoretical findings.
Abstract:In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Mul- timodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embed- ding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the pro- cess by synchronizing multimodal representation with label de- scriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
Abstract:Referring expression comprehension (REC) aims at achieving object localization based on natural language descriptions. However, existing REC approaches are constrained by object category descriptions and single-attribute intention descriptions, hindering their application in real-world scenarios. In natural human-robot interactions, users often express their desires through individual states and intentions, accompanied by guiding gestures, rather than detailed object descriptions. To address this challenge, we propose Multi-ref EC, a novel task framework that integrates state descriptions, derived intentions, and embodied gestures to locate target objects. We introduce the State-Intention-Gesture Attributes Reference (SIGAR) dataset, which combines state and intention expressions with embodied references. Through extensive experiments with various baseline models on SIGAR, we demonstrate that properly ordered multi-attribute references contribute to improved localization performance, revealing that single-attribute reference is insufficient for natural human-robot interaction scenarios. Our findings underscore the importance of multi-attribute reference expressions in advancing visual-language understanding.
Abstract:Medical time series has been playing a vital role in real-world healthcare systems as valuable information in monitoring health conditions of patients. Accurate classification for medical time series, e.g., Electrocardiography (ECG) signals, can help for early detection and diagnosis. Traditional methods towards medical time series classification rely on handcrafted feature extraction and statistical methods; with the recent advancement of artificial intelligence, the machine learning and deep learning methods have become more popular. However, existing methods often fail to fully model the complex spatial dynamics under different scales, which ignore the dynamic multi-resolution spatial and temporal joint inter-dependencies. Moreover, they are less likely to consider the special baseline wander problem as well as the multi-view characteristics of medical time series, which largely hinders their prediction performance. To address these limitations, we propose a Multi-resolution Spatiotemporal Graph Learning framework, MedGNN, for medical time series classification. Specifically, we first propose to construct multi-resolution adaptive graph structures to learn dynamic multi-scale embeddings. Then, to address the baseline wander problem, we propose Difference Attention Networks to operate self-attention mechanisms on the finite difference for temporal modeling. Moreover, to learn the multi-view characteristics, we utilize the Frequency Convolution Networks to capture complementary information of medical time series from the frequency domain. In addition, we introduce the Multi-resolution Graph Transformer architecture to model the dynamic dependencies and fuse the information from different resolutions. Finally, we have conducted extensive experiments on multiple medical real-world datasets that demonstrate the superior performance of our method. Our Code is available.