The potential of artificial upwelling (AU) as a means of lifting nutrient-rich bottom water to the surface, stimulating seaweed growth, and consequently enhancing ocean carbon sequestration, has been gaining increasing attention in recent years. This has led to the development of the first solar-powered and air-lifted AU system (AUS) in China. However, efficient scheduling of air injection systems in complex marine environments remains a crucial challenge in operating AUS, as it holds the potential to significantly improve energy efficiency. To tackle this challenge, we propose a novel energy management approach that utilizes deep reinforcement learning (DRL) algorithm to develop efficient strategies for operating AUS. Specifically, we formulate the problem of maximizing the energy efficiency of AUS as a Markov decision process and integrate the quantile network in distributional reinforcement learning (QR-DQN) with the deep dueling network to solve it. Through extensive simulations, we evaluate the performance of our algorithm and demonstrate its superior effectiveness over traditional rule-based approaches and other DRL algorithms in reducing energy wastage while ensuring the stable and efficient operation of AUS. Our findings suggest that a DRL-based approach offers a promising way to improve the energy efficiency of AUS and enhance the sustainability of seaweed cultivation and carbon sequestration in the ocean.
With the rapid progress of large language models (LLMs), many downstream NLP tasks can be well solved given good prompts. Though model developers and researchers work hard on dialog safety to avoid generating harmful content from LLMs, it is still challenging to steer AI-generated content (AIGC) for the human good. As powerful LLMs are devouring existing text data from various domains (e.g., GPT-3 is trained on 45TB texts), it is natural to doubt whether the private information is included in the training data and what privacy threats can these LLMs and their downstream applications bring. In this paper, we study the privacy threats from OpenAI's model APIs and New Bing enhanced by ChatGPT and show that application-integrated LLMs may cause more severe privacy threats ever than before. To this end, we conduct extensive experiments to support our claims and discuss LLMs' privacy implications.
The distribution shift in Time Series Forecasting (TSF), indicating series distribution changes over time, largely hinders the performance of TSF models. Existing works towards distribution shift in time series are mostly limited in the quantification of distribution and, more importantly, overlook the potential shift between lookback and horizon windows. To address above challenges, we systematically summarize the distribution shift in TSF into two categories. Regarding lookback windows as input-space and horizon windows as output-space, there exist (i) intra-space shift, that the distribution within the input-space keeps shifted over time, and (ii) inter-space shift, that the distribution is shifted between input-space and output-space. Then we introduce, Dish-TS, a general neural paradigm for alleviating distribution shift in TSF. Specifically, for better distribution estimation, we propose the coefficient net (CONET), which can be any neural architectures, to map input sequences into learnable distribution coefficients. To relieve intra-space and inter-space shift, we organize Dish-TS as a Dual-CONET framework to separately learn the distribution of input- and output-space, which naturally captures the distribution difference of two spaces. In addition, we introduce a more effective training strategy for intractable CONET learning. Finally, we conduct extensive experiments on several datasets coupled with different state-of-the-art forecasting models. Experimental results show Dish-TS consistently boosts them with a more than 20% average improvement. Code is available.
This paper is concerned with the problem of reconstructing an unknown rank-one matrix with prior structural information from noisy observations. While computing the Bayes-optimal estimator seems intractable in general due to its nonconvex nature, Approximate Message Passing (AMP) emerges as an efficient first-order method to approximate the Bayes-optimal estimator. However, the theoretical underpinnings of AMP remain largely unavailable when it starts from random initialization, a scheme of critical practical utility. Focusing on a prototypical model called $\mathbb{Z}_{2}$ synchronization, we characterize the finite-sample dynamics of AMP from random initialization, uncovering its rapid global convergence. Our theory provides the first non-asymptotic characterization of AMP in this model without requiring either an informative initialization (e.g., spectral initialization) or sample splitting.
Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods.
Image-text retrieval (ITR) is a challenging task in the field of multimodal information processing due to the semantic gap between different modalities. In recent years, researchers have made great progress in exploring the accurate alignment between image and text. However, existing works mainly focus on the fine-grained alignment between image regions and sentence fragments, which ignores the guiding significance of context background information. Actually, integrating the local fine-grained information and global context background information can provide more semantic clues for retrieval. In this paper, we propose a novel Hierarchical Graph Alignment Network (HGAN) for image-text retrieval. First, to capture the comprehensive multimodal features, we construct the feature graphs for the image and text modality respectively. Then, a multi-granularity shared space is established with a designed Multi-granularity Feature Aggregation and Rearrangement (MFAR) module, which enhances the semantic corresponding relations between the local and global information, and obtains more accurate feature representations for the image and text modalities. Finally, the ultimate image and text features are further refined through three-level similarity functions to achieve the hierarchical alignment. To justify the proposed model, we perform extensive experiments on MS-COCO and Flickr30K datasets. Experimental results show that the proposed HGAN outperforms the state-of-the-art methods on both datasets, which demonstrates the effectiveness and superiority of our model.
Change detection (CD) is to decouple object changes (i.e., object missing or appearing) from background changes (i.e., environment variations) like light and season variations in two images captured in the same scene over a long time span, presenting critical applications in disaster management, urban development, etc. In particular, the endless patterns of background changes require detectors to have a high generalization against unseen environment variations, making this task significantly challenging. Recent deep learning-based methods develop novel network architectures or optimization strategies with paired-training examples, which do not handle the generalization issue explicitly and require huge manual pixel-level annotation efforts. In this work, for the first attempt in the CD community, we study the generalization issue of CD from the perspective of data augmentation and develop a novel weakly supervised training algorithm that only needs image-level labels. Different from general augmentation techniques for classification, we propose the background-mixed augmentation that is specifically designed for change detection by augmenting examples under the guidance of a set of background-changing images and letting deep CD models see diverse environment variations. Moreover, we propose the augmented & real data consistency loss that encourages the generalization increase significantly. Our method as a general framework can enhance a wide range of existing deep learning-based detectors. We conduct extensive experiments in two public datasets and enhance four state-of-the-art methods, demonstrating the advantages of our method. We release the code at https://github.com/tsingqguo/bgmix.