Abstract:With the rapid advancements in big data technologies, the Databricks platform has become a cornerstone for enterprises and research institutions, offering high computational efficiency and a robust ecosystem. However, managing the escalating operational costs associated with job execution remains a critical challenge. Existing solutions rely on static configurations or reactive adjustments, which fail to adapt to the dynamic nature of workloads. To address this, we introduce LeJOT, an intelligent job cost orchestration framework that leverages machine learning for execution time prediction and a solver-based optimization model for real-time resource allocation. Unlike conventional scheduling techniques, LeJOT proactively predicts workload demands, dynamically allocates computing resources, and minimizes costs while ensuring performance requirements are met. Experimental results on real-world Databricks workloads demonstrate that LeJOT achieves an average 20% reduction in cloud computing costs within a minute-level scheduling timeframe, outperforming traditional static allocation strategies. Our approach provides a scalable and adaptive solution for cost-efficient job scheduling in Data Lakehouse environments.
Abstract:The rapid evolution of Large Language Models (LLMs) into autonomous agents has led to the adoption of the Model Context Protocol (MCP) as a standard for discovering and invoking external tools. While this architecture decouples the reasoning engine from tool execution to enhance scalability, it introduces a significant privacy surface: third-party MCP servers, acting as semi-honest intermediaries, can observe detailed tool interaction logs outside the user's trusted boundary. In this paper, we first identify and formalize a novel privacy threat termed Intent Inversion, where a semi-honest MCP server attempts to reconstruct the user's private underlying intent solely by analyzing legitimate tool calls. To systematically assess this vulnerability, we propose IntentMiner, a framework that leverages Hierarchical Information Isolation and Three-Dimensional Semantic Analysis, integrating tool purpose, call statements, and returned results, to accurately infer user intent at the step level. Extensive experiments demonstrate that IntentMiner achieves a high degree of semantic alignment (over 85%) with original user queries, significantly outperforming baseline approaches. These results highlight the inherent privacy risks in decoupled agent architectures, revealing that seemingly benign tool execution logs can serve as a potent vector for exposing user secrets.
Abstract:Embedding deep neural networks (NNs) into mixed-integer programs (MIPs) is attractive for decision making with learned constraints, yet state-of-the-art monolithic linearisations blow up in size and quickly become intractable. In this paper, we introduce a novel dual-decomposition framework that relaxes the single coupling equality u=x with an augmented Lagrange multiplier and splits the problem into a vanilla MIP and a constrained NN block. Each part is tackled by the solver that suits it best-branch and cut for the MIP subproblem, first-order optimisation for the NN subproblem-so the model remains modular, the number of integer variables never grows with network depth, and the per-iteration cost scales only linearly with the NN size. On the public \textsc{SurrogateLIB} benchmark, our method proves \textbf{scalable}, \textbf{modular}, and \textbf{adaptable}: it runs \(120\times\) faster than an exact Big-M formulation on the largest test case; the NN sub-solver can be swapped from a log-barrier interior step to a projected-gradient routine with no code changes and identical objective value; and swapping the MLP for an LSTM backbone still completes the full optimisation in 47s without any bespoke adaptation.
Abstract:Structure-based drug design (SBDD), which maps target proteins to candidate molecular ligands, is a fundamental task in drug discovery. Effectively aligning protein structural representations with molecular representations, and ensuring alignment between generated drugs and their pharmacological properties, remains a critical challenge. To address these challenges, we propose MolChord, which integrates two key techniques: (1) to align protein and molecule structures with their textual descriptions and sequential representations (e.g., FASTA for proteins and SMILES for molecules), we leverage NatureLM, an autoregressive model unifying text, small molecules, and proteins, as the molecule generator, alongside a diffusion-based structure encoder; and (2) to guide molecules toward desired properties, we curate a property-aware dataset by integrating preference data and refine the alignment process using Direct Preference Optimization (DPO). Experimental results on CrossDocked2020 demonstrate that our approach achieves state-of-the-art performance on key evaluation metrics, highlighting its potential as a practical tool for SBDD.
Abstract:The value and copyright of training data are crucial in the artificial intelligence industry. Service platforms should protect data providers' legitimate rights and fairly reward them for their contributions. Shapley value, a potent tool for evaluating contributions, outperforms other methods in theory, but its computational overhead escalates exponentially with the number of data providers. Recent works based on Shapley values attempt to mitigate computation complexity by approximation algorithms. However, they need to retrain for each test sample, leading to intolerable costs. We propose Fast-DataShapley, a one-pass training method that leverages the weighted least squares characterization of the Shapley value to train a reusable explainer model with real-time reasoning speed. Given new test samples, no retraining is required to calculate the Shapley values of the training data. Additionally, we propose three methods with theoretical guarantees to reduce training overhead from two aspects: the approximate calculation of the utility function and the group calculation of the training data. We analyze time complexity to show the efficiency of our methods. The experimental evaluations on various image datasets demonstrate superior performance and efficiency compared to baselines. Specifically, the performance is improved to more than 2.5 times, and the explainer's training speed can be increased by two orders of magnitude.
Abstract:The burgeoning growth of the esports and multiplayer online gaming community has highlighted the critical importance of evaluating the Most Valuable Player (MVP). The establishment of an explainable and practical MVP evaluation method is very challenging. In our study, we specifically focus on play-by-play data, which records related events during the game, such as assists and points. We aim to address the challenges by introducing a new MVP evaluation framework, denoted as \oursys, which leverages Shapley values. This approach encompasses feature processing, win-loss model training, Shapley value allocation, and MVP ranking determination based on players' contributions. Additionally, we optimize our algorithm to align with expert voting results from the perspective of causality. Finally, we substantiated the efficacy of our method through validation using the NBA dataset and the Dunk City Dynasty dataset and implemented online deployment in the industry.
Abstract:Environmental sensing is an important research topic in the integrated sensing and communication (ISAC) system. Current works often focus on static environments, such as buildings and terrains. However, dynamic factors like rainfall can cause serious interference to wireless signals. In this paper, we propose a system called RainfalLTE that utilizes the downlink signal of LTE base stations for device-independent rain sensing. In articular, it is fully compatible with current communication modes and does not require any additional hardware. We evaluate it with LTE data and rainfall information provided by a weather radar in Badaling Town, Beijing The results show that for 10 classes of rainfall, RainfalLTE achieves over 97% identification accuracy. Our case study shows that the assistance of rainfall information can bring more than 40% energy saving, which provides new opportunities for the design and optimization of ISAC systems.
Abstract:Due to its ability to work in non-line-of-sight and low-light environments, radio frequency (RF) imaging technology is expected to bring new possibilities for embodied intelligence and multimodal sensing. However, widely used RF devices (such as Wi-Fi) often struggle to provide high-precision electromagnetic measurements and large-scale datasets, hindering the application of RF imaging technology. In this paper, we combine the ideas of PINN to design the RINN network, using physical constraints instead of true value comparison constraints and adapting it with the characteristics of ubiquitous RF signals, allowing the RINN network to achieve RF imaging using only one sample without phase and with amplitude noise. Our numerical evaluation results show that compared with 5 classic algorithms based on phase data for imaging results, RINN's imaging results based on phaseless data are good, with indicators such as RRMSE (0.11) performing similarly well. RINN provides new possibilities for the universal development of radio frequency imaging technology.
Abstract:In mixed-integer programming (MIP) solvers, cutting planes are essential for Branch-and-Cut (B&C) algorithms as they reduce the search space and accelerate the solving process. Traditional methods rely on hard-coded heuristics for cut plane selection but fail to leverage problem-specific structural features. Recent machine learning approaches use neural networks for cut selection but focus narrowly on the efficiency of single-node within the B&C algorithm, without considering the broader contextual information. To address this, we propose Global Cut Selection (GCS), which uses a bipartite graph to represent the search tree and combines graph neural networks with reinforcement learning to develop cut selection strategies. Unlike prior methods, GCS applies cutting planes across all nodes, incorporating richer contextual information. Experiments show GCS significantly improves solving efficiency for synthetic and large-scale real-world MIPs compared to traditional and learning-based methods.




Abstract:Online Cloud gaming demands real-time, high-quality video transmission across variable wide-area networks (WANs). Neural-enhanced video transmission algorithms employing super-resolution (SR) for video quality enhancement have effectively challenged WAN environments. However, these SR-based methods require intensive fine-tuning for the whole video, making it infeasible in diverse online cloud gaming. To address this, we introduce River, a cloud gaming delivery framework designed based on the observation that video segment features in cloud gaming are typically repetitive and redundant. This permits a significant opportunity to reuse fine-tuned SR models, reducing the fine-tuning latency of minutes to query latency of milliseconds. To enable the idea, we design a practical system that addresses several challenges, such as model organization, online model scheduler, and transfer strategy. River first builds a content-aware encoder that fine-tunes SR models for diverse video segments and stores them in a lookup table. When delivering cloud gaming video streams online, River checks the video features and retrieves the most relevant SR models to enhance the frame quality. Meanwhile, if no existing SR model performs well enough for some video segments, River will further fine-tune new models and update the lookup table. Finally, to avoid the overhead of streaming model weight to the clients, River designs a prefetching strategy that predicts the models with the highest possibility of being retrieved. Our evaluation based on real video game streaming demonstrates River can reduce redundant training overhead by 44% and improve the Peak-Signal-to-Noise-Ratio by 1.81dB compared to the SOTA solutions. Practical deployment shows River meets real-time requirements, achieving approximately 720p 20fps on mobile devices.