Fellow, IEEE
Abstract:This work investigates the spatial power focusing effect for large-scale sparse arrays at terahertz (THz) band, combining theoretical analysis with experimental validation. Specifically, based on a Green's function channel model, we analyze the power distribution along the $z$-axis, deriving a closed-form expression to characterize the focusing effect. Furthermore, the factors influencing the focusing effect, including phase noise and positional deviations, are theoretically analyzed and numerically simulated. Finally, a 300 GHz measurement platform based on a vector network analyzer (VNA) is constructed for experimental validation. The measurement results demonstrate close consistence with theoretical simulation results, confirming the spatial power focusing effect for sparse arrays.
Abstract:The evolution of next-generation wireless networks has spurred the vigorous development of the low-altitude economy (LAE). To support this emerging field while remaining compatible with existing network architectures, integrated sensing and communication (ISAC) based on 5G New Radio (NR) signals is regarded as a promising solution. However, merely leveraging standard 5G NR signals, such as the Synchronization Signal Block (SSB), presents fundamental limitations in sensing resolution. To address the issue, this paper proposes a two-stage coarse-to-fine sensing framework that utilizes standard 5G NR initial access signals augmented by a custom-designed sparse pilot structure (SPS) for high-precision unmanned aerial vehicles (UAV) sensing. In Stage I, we first fuse information from the SSB, Type\#0-PDCCH, and system information block 1 (SIB1) to ensure the initial target detection. In Stage II, a refined estimation algorithm is introduced to overcome the resolution limitations of these signals. Inspired by the sparse array theory, this stage employs a novel SPS, which is inserted into resource blocks (RBs) within the CORSET\#0 bandwidth. To accurately extract the off-grid range and velocity parameters from these sparse pilots, we develop a corresponding high-resolution algorithm based on the weighted unwrapped phase (WUP) technique and the RELAX-based iterative method. Finally, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adopted to prune the redundant detections arising from beam overlap. Comprehensive simulation results demonstrate the superior estimation accuracy and computational efficiency of the proposed framework in comparison to other techniques.
Abstract:Integrated sensing and communication (ISAC) has emerged as a key enabler for sixth-generation (6G) wireless networks, supporting spectrum sharing and hardware integration. Beyond communication enhancement, ISAC also enables high-accuracy environment reconstruction and imaging, which are crucial for applications such as autonomous driving and digital twins. This paper proposes a 4D imaging framework fully compliant with the 5G New Radio (NR) protocol, ensuring compatibility with cellular systems. Specifically, we develop an end-to-end processing chain that covers waveform generation, echo processing, and multi-BS point cloud fusion. Furthermore, we introduce Zoom-OMP, a coarse-to-fine sparse recovery algorithm for high-resolution angle estimation that achieves high accuracy with reduced computational cost. The simulation results demonstrate that the proposed framework achieves robust 4D imaging performance with superior spatial accuracy and reconstruction quality compared to conventional benchmarks, paving the way for practical ISAC-enabled environment reconstruction in 6G networks.




Abstract:The emergence of extremely large-scale antenna arrays (ELAA) in millimeter-wave (mmWave) communications, particularly in high-mobility scenarios, highlights the importance of near-field beam prediction. Unlike the conventional far-field assumption, near-field beam prediction requires codebooks that jointly sample the angular and distance domains, which leads to a dramatic increase in pilot overhead. Moreover, unlike the far- field case where the optimal beam evolution is temporally smooth, the optimal near-field beam index exhibits abrupt and nonlinear dynamics due to its joint dependence on user angle and distance, posing significant challenges for temporal modeling. To address these challenges, we propose a novel Convolutional Neural Network-Generative Pre-trained Transformer 2 (CNN-GPT2) based near-field beam prediction framework. Specifically, an uplink pilot transmission strategy is designed to enable efficient channel probing through widebeam analog precoding and frequency-varying digital precoding. The received pilot signals are preprocessed and passed through a CNN-based feature extractor, followed by a GPT-2 model that captures temporal dependencies across multiple frames and directly predicts the near-field beam index in an end-to-end manner.
Abstract:In emergency wireless communications (EWC) scenarios, ensuring reliable, flexible, and high-rate transmission while simultaneously maintaining seamless coverage and rapid response capabilities presents a critical technical challenge. To this end, satellite-aerial-ground integrated network (SAGIN) has emerged as a promising solution due to its comprehensive three-dimensional coverage and capability to meet stringent, multi-faceted quality-of-service (QoS) requirements. Nevertheless, most existing studies either neglected the inherent characteristics of the complex channel conditions due to the terrain changes or analyzed the performance in the absence of QoS constraints, resulting in a mismatch between theoretical analysis and practical performance. To remedy such deficiencies, in this paper we establish a performance modeling framework for SAGIN employing the Fisher-Snedecor $\mathcal{F}$ composite fading model to characterize the air-ground link. In specific, the proposed $\mathcal{F}$ composite fading channel is adopted to accurately describe both multipath fading and shadowing in harsh ground environments. The exact distribution of end-to-end signal-to-noise (SNR) statistics for space-air and air-ground links is developed, enabling theoretical analysis of cascaded channels with fixed-gain amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols, respectively. Furthermore, asymptotic expressions of the derived results are provided to offer concise representations and demonstrate close alignment with theoretical predictions in the high-SNR regime. Finally, the insightful closed-form and asymptotic expressions of effective capacity with QoS provisioning, outage probability, and $\epsilon$-outage capacity are investigated, respectively, followed by both field measurements and Monte Carlo simulations to verify the effectiveness.
Abstract:The deployment of unmanned aerial vehicles (UAVs) for reliable and energy-efficient data collection from spatially distributed devices holds great promise in supporting diverse Internet of Things (IoT) applications. Nevertheless, the limited endurance and communication range of UAVs necessitate intelligent trajectory planning. While reinforcement learning (RL) has been extensively explored for UAV trajectory optimization, its interactive nature entails high costs and risks in real-world environments. Offline RL mitigates these issues but remains susceptible to unstable training and heavily rely on expert-quality datasets. To address these challenges, we formulate a joint UAV trajectory planning and resource allocation problem to maximize energy efficiency of data collection. The resource allocation subproblem is first transformed into an equivalent linear programming formulation and solved optimally with polynomial-time complexity. Then, we propose a large language model (LLM)-empowered critic-regularized decision transformer (DT) framework, termed LLM-CRDT, to learn effective UAV control policies. In LLM-CRDT, we incorporate critic networks to regularize the DT model training, thereby integrating the sequence modeling capabilities of DT with critic-based value guidance to enable learning effective policies from suboptimal datasets. Furthermore, to mitigate the data-hungry nature of transformer models, we employ a pre-trained LLM as the transformer backbone of the DT model and adopt a parameter-efficient fine-tuning strategy, i.e., LoRA, enabling rapid adaptation to UAV control tasks with small-scale dataset and low computational overhead. Extensive simulations demonstrate that LLM-CRDT outperforms benchmark online and offline RL methods, achieving up to 36.7\% higher energy efficiency than the current state-of-the-art DT approaches.
Abstract:In this work, we aim to effectively characterize the performance of cooperative integrated sensing and communication (ISAC) networks and to reveal how performance metrics relate to network parameters. To this end, we introduce a generalized stochastic geometry framework to model the cooperative ISAC networks, which approximates the spatial randomness of the network deployment. Based on this framework, we derive analytical expressions for key performance metrics in both communication and sensing domains, with a particular focus on communication coverage probability and radar information rate. The analytical expressions derived explicitly highlight how performance metrics depend on network parameters, thereby offering valuable insights into the deployment and design of cooperative ISAC networks. In the end, we validate the theoretical performance analysis through Monte Carlo simulation results. Our results demonstrate that increasing the number of cooperative base stations (BSs) significantly improves both metrics, while increasing the BS deployment density has a limited impact on communication coverage probability but substantially enhances the radar information rate. Additionally, increasing the number of transmit antennas is effective when the total number of transmit antennas is relatively small. The incremental performance gain reduces with the increase of the number of transmit antennas, suggesting that indiscriminately increasing antennas is not an efficient strategy to improve the performance of the system in cooperative ISAC networks.




Abstract:Large AI models (LAMs) have shown strong potential in wireless communication tasks, but their practical deployment remains hindered by latency and computational constraints. In this work, we focus on the challenge of integrating LAMs into channel state information (CSI) feedback for frequency-division duplex (FDD) massive multiple-intput multiple-output (MIMO) systems. To this end, we propose two offline frameworks, namely site-specific LAM-enhanced CSI feedback (SSLCF) and multi-scenario LAM-enhanced CSI feedback (MSLCF), that incorporate LAMs into the codebook-based CSI feedback paradigm without requiring real-time inference. Specifically, SSLCF generates a site-specific enhanced codebook through fine-tuning on locally collected CSI data, while MSLCF improves generalization by pre-generating a set of environment-aware codebooks. Both of these frameworks build upon the LAM with vision-based backbone, which is pre-trained on large-scale image datasets and fine-tuned with CSI data to generate customized codebooks. This resulting network named LVM4CF captures the structural similarity between CSI and image, allowing the LAM to refine codewords tailored to the specific environments. To optimize the codebook refinement capability of LVM4CF under both single- and dual-side deployment modes, we further propose corresponding training and inference algorithms. Simulation results show that our frameworks significantly outperform existing schemes in both reconstruction accuracy and system throughput, without introducing additional inference latency or computational overhead. These results also support the core design methodology of our proposed frameworks, extracting the best and discarding the rest, as a promising pathway for integrating LAMs into future wireless systems.
Abstract:Life-transformative applications such as immersive extended reality are revolutionizing wireless communications and computer vision (CV). This paper presents a novel framework for importance-aware adaptive data transmissions, designed specifically for real-time CV applications where task-specific fidelity is critical. A novel importance-weighted mean square error (IMSE) metric is introduced as a task-oriented measure of reconstruction quality, considering sub-pixel-level importance (SP-I) and semantic segment-level importance (SS-I) models. To minimize IMSE under total power constraints, data-importance-aware waterfilling approaches are proposed to optimally allocate transmission power according to data importance and channel conditions, prioritizing sub-streams with high importance. Simulation results demonstrate that the proposed approaches significantly outperform margin-adaptive waterfilling and equal power allocation strategies. The data partitioning that combines both SP-I and SS-I models is shown to achieve the most significant improvements, with normalized IMSE gains exceeding $7\,$dB and $10\,$dB over the baselines at high SNRs ($>10\,$dB). These substantial gains highlight the potential of the proposed framework to enhance data efficiency and robustness in real-time CV applications, especially in bandwidth-limited and resource-constrained environments.
Abstract:This paper systematically analyzes the typical application scenarios and key technical challenges of AI in 6G air interface transmission, covering important areas such as performance enhancement of single functional modules, joint optimization of multiple functional modules, and low-complexity solutions to complex mathematical problems. Innovatively, a three-dimensional joint optimization design criterion is proposed, which comprehensively considers AI capability, quality, and cost. By maximizing the ratio of multi-scenario communication capability to comprehensive cost, a triangular equilibrium is achieved, effectively addressing the lack of consideration for quality and cost dimensions in existing design criteria. The effectiveness of the proposed method is validated through multiple design examples, and the technical pathways and challenges for air interface AI standardization are thoroughly discussed. This provides significant references for the theoretical research and engineering practice of 6G air interface AI technology.