Abstract:Large language models (LLMs) achieve remarkable performance across tasks but incur substantial computational costs due to their deep, multi-layered architectures. Layer pruning has emerged as a strategy to alleviate these inefficiencies, but conventional static pruning methods overlook two critical dynamics inherent to LLM inference: (1) horizontal dynamics, where token-level heterogeneity demands context-aware pruning decisions, and (2) vertical dynamics, where the distinct functional roles of MLP and self-attention layers necessitate component-specific pruning policies. We introduce SkipGPT, a dynamic layer pruning framework designed to optimize computational resource allocation through two core innovations: (1) global token-aware routing to prioritize critical tokens, and (2) decoupled pruning policies for MLP and self-attention components. To mitigate training instability, we propose a two-stage optimization paradigm: first, a disentangled training phase that learns routing strategies via soft parameterization to avoid premature pruning decisions, followed by parameter-efficient LoRA fine-tuning to restore performance impacted by layer removal. Extensive experiments demonstrate that SkipGPT reduces over 40% of model parameters while matching or exceeding the performance of the original dense model across benchmarks. By harmonizing dynamic efficiency with preserved expressivity, SkipGPT advances the practical deployment of scalable, resource-aware LLMs. Our code is publicly available at: https://github.com/EIT-NLP/SkipGPT.
Abstract:Large Language Models (LLMs) have achieved impressive performance on complex reasoning tasks with Chain-of-Thought (CoT) prompting. However, conventional CoT relies on reasoning steps explicitly verbalized in natural language, introducing inefficiencies and limiting its applicability to abstract reasoning. To address this, there has been growing research interest in latent CoT reasoning, where inference occurs within latent spaces. By decoupling reasoning from language, latent reasoning promises richer cognitive representations and more flexible, faster inference. Researchers have explored various directions in this promising field, including training methodologies, structural innovations, and internal reasoning mechanisms. This paper presents a comprehensive overview and analysis of this reasoning paradigm. We begin by proposing a unified taxonomy from four perspectives: token-wise strategies, internal mechanisms, analysis, and applications. We then provide in-depth discussions and comparative analyses of representative methods, highlighting their design patterns, strengths, and open challenges. We aim to provide a structured foundation for advancing this emerging direction in LLM reasoning. The relevant papers will be regularly updated at https://github.com/EIT-NLP/Awesome-Latent-CoT.
Abstract:Large Language Models (LLMs) are primarily designed for batch processing. Existing methods for adapting LLMs to streaming rely either on expensive re-encoding or specialized architectures with limited scalability. This work identifies three key mismatches in adapting batch-oriented LLMs to streaming: (1) input-attention, (2) output-attention, and (3) position-ID mismatches. While it is commonly assumed that the latter two mismatches require frequent re-encoding, our analysis reveals that only the input-attention mismatch significantly impacts performance, indicating re-encoding outputs is largely unnecessary. To better understand this discrepancy with the common assumption, we provide the first comprehensive analysis of the impact of position encoding on LLMs in streaming, showing that preserving relative positions within source and target contexts is more critical than maintaining absolute order. Motivated by the above analysis, we introduce a group position encoding paradigm built on batch architectures to enhance consistency between streaming and batch modes. Extensive experiments on cross-lingual and cross-modal tasks demonstrate that our method outperforms existing approaches. Our method requires no architectural modifications, exhibits strong generalization in both streaming and batch modes. The code is available at repository https://github.com/EIT-NLP/StreamingLLM.
Abstract:Vision-language models (VLMs) have demonstrated excellent high-level planning capabilities, enabling locomotion skill learning from video demonstrations without the need for meticulous human-level reward design. However, the improper frame sampling method and low training efficiency of current methods remain a critical bottleneck, resulting in substantial computational overhead and time costs. To address this limitation, we propose Motion-aware Rapid Reward Optimization for Efficient Robot Skill Learning from Single Videos (MA-ROESL). MA-ROESL integrates a motion-aware frame selection method to implicitly enhance the quality of VLM-generated reward functions. It further employs a hybrid three-phase training pipeline that improves training efficiency via rapid reward optimization and derives the final policy through online fine-tuning. Experimental results demonstrate that MA-ROESL significantly enhances training efficiency while faithfully reproducing locomotion skills in both simulated and real-world settings, thereby underscoring its potential as a robust and scalable framework for efficient robot locomotion skill learning from video demonstrations.
Abstract:Multimodal large language models (MLLMs) have achieved impressive performance across a wide range of tasks, typically using CLIP-ViT as their visual encoder due to its strong text-image alignment capabilities. While prior studies suggest that different CLIP-ViT layers capture different types of information, with shallower layers focusing on fine visual details and deeper layers aligning more closely with textual semantics, most MLLMs still select visual features based on empirical heuristics rather than systematic analysis. In this work, we propose a Layer-wise Representation Similarity approach to group CLIP-ViT layers with similar behaviors into {shallow, middle, and deep} categories and assess their impact on MLLM performance. Building on this foundation, we revisit the visual layer selection problem in MLLMs at scale, training LLaVA-style models ranging from 1.4B to 7B parameters. Through extensive experiments across 10 datasets and 4 tasks, we find that: (1) deep layers are essential for OCR tasks; (2) shallow and middle layers substantially outperform deep layers on reasoning tasks involving counting, positioning, and object localization; (3) a lightweight fusion of features across shallow, middle, and deep layers consistently outperforms specialized fusion baselines and single-layer selections, achieving gains on 9 out of 10 datasets. Our work offers the first principled study of visual layer selection in MLLMs, laying the groundwork for deeper investigations into visual representation learning for MLLMs.
Abstract:In recent years, multi-agent frameworks powered by large language models (LLMs) have advanced rapidly. Despite this progress, there is still a notable absence of benchmark datasets specifically tailored to evaluate their performance. To bridge this gap, we introduce Auto-SLURP, a benchmark dataset aimed at evaluating LLM-based multi-agent frameworks in the context of intelligent personal assistants. Auto-SLURP extends the original SLURP dataset -- initially developed for natural language understanding tasks -- by relabeling the data and integrating simulated servers and external services. This enhancement enables a comprehensive end-to-end evaluation pipeline, covering language understanding, task execution, and response generation. Our experiments demonstrate that Auto-SLURP presents a significant challenge for current state-of-the-art frameworks, highlighting that truly reliable and intelligent multi-agent personal assistants remain a work in progress. The dataset and related code are available at https://github.com/lorashen/Auto-SLURP/.
Abstract:Text-to-speech (TTS) technology has achieved impressive results for widely spoken languages, yet many under-resourced languages remain challenged by limited data and linguistic complexities. In this paper, we present a novel methodology that integrates a data-optimized framework with an advanced acoustic model to build high-quality TTS systems for low-resource scenarios. We demonstrate the effectiveness of our approach using Thai as an illustrative case, where intricate phonetic rules and sparse resources are effectively addressed. Our method enables zero-shot voice cloning and improved performance across diverse client applications, ranging from finance to healthcare, education, and law. Extensive evaluations - both subjective and objective - confirm that our model meets state-of-the-art standards, offering a scalable solution for TTS production in data-limited settings, with significant implications for broader industry adoption and multilingual accessibility.
Abstract:Deep Reinforcement Learning (DRL) based navigation methods have demonstrated promising results for mobile robots, but suffer from limited action flexibility in confined spaces. Conventional DRL approaches predominantly learn forward-motion policies, causing robots to become trapped in complex environments where backward maneuvers are necessary for recovery. This paper presents MAER-Nav (Mirror-Augmented Experience Replay for Robot Navigation), a novel framework that enables bidirectional motion learning without requiring explicit failure-driven hindsight experience replay or reward function modifications. Our approach integrates a mirror-augmented experience replay mechanism with curriculum learning to generate synthetic backward navigation experiences from successful trajectories. Experimental results in both simulation and real-world environments demonstrate that MAER-Nav significantly outperforms state-of-the-art methods while maintaining strong forward navigation capabilities. The framework effectively bridges the gap between the comprehensive action space utilization of traditional planning methods and the environmental adaptability of learning-based approaches, enabling robust navigation in scenarios where conventional DRL methods consistently fail.
Abstract:In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
Abstract:Chain-of-Thought (CoT) reasoning has proven effective in natural language tasks but remains underexplored in multimodal alignment. This study investigates its integration into 3D vision-language learning by embedding structured reasoning into alignment training. We introduce the 3D-CoT Benchmark, a dataset with hierarchical CoT annotations covering shape recognition, functional inference, and causal reasoning. Through controlled experiments, we compare CoT-structured and standard textual annotations across large reasoning models (LRMs) and large language models (LLMs). Our evaluation employs a dual-layer framework assessing both intermediate reasoning and final inference quality. Extensive experiments demonstrate that CoT significantly improves 3D semantic grounding, with LRMs leveraging CoT more effectively than LLMs. Furthermore, we highlight that annotation structure influences performance-explicit reasoning markers aid LLMs, while unmarked CoT better aligns with LRM inference patterns. Our analyses suggest that CoT is crucial for enhancing multimodal reasoning, with implications beyond 3D tasks.