Alert button
Picture for Fuzhen Zhuang

Fuzhen Zhuang

Alert button

DPR: An Algorithm Mitigate Bias Accumulation in Recommendation feedback loops

Nov 10, 2023
Hangtong Xu, Yuanbo Xu, Yongjian Yang, Fuzhen Zhuang, Hui Xiong

Recommendation models trained on the user feedback collected from deployed recommendation systems are commonly biased. User feedback is considerably affected by the exposure mechanism, as users only provide feedback on the items exposed to them and passively ignore the unexposed items, thus producing numerous false negative samples. Inevitably, biases caused by such user feedback are inherited by new models and amplified via feedback loops. Moreover, the presence of false negative samples makes negative sampling difficult and introduces spurious information in the user preference modeling process of the model. Recent work has investigated the negative impact of feedback loops and unknown exposure mechanisms on recommendation quality and user experience, essentially treating them as independent factors and ignoring their cross-effects. To address these issues, we deeply analyze the data exposure mechanism from the perspective of data iteration and feedback loops with the Missing Not At Random (\textbf{MNAR}) assumption, theoretically demonstrating the existence of an available stabilization factor in the transformation of the exposure mechanism under the feedback loops. We further propose Dynamic Personalized Ranking (\textbf{DPR}), an unbiased algorithm that uses dynamic re-weighting to mitigate the cross-effects of exposure mechanisms and feedback loops without additional information. Furthermore, we design a plugin named Universal Anti-False Negative (\textbf{UFN}) to mitigate the negative impact of the false negative problem. We demonstrate theoretically that our approach mitigates the negative effects of feedback loops and unknown exposure mechanisms. Experimental results on real-world datasets demonstrate that models using DPR can better handle bias accumulation and the universality of UFN in mainstream loss methods.

Viaarxiv icon

Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation

Oct 31, 2023
Xiuyuan Qin, Huanhuan Yuan, Pengpeng Zhao, Guanfeng Liu, Fuzhen Zhuang, Victor S. Sheng

The user purchase behaviors are mainly influenced by their intentions (e.g., buying clothes for decoration, buying brushes for painting, etc.). Modeling a user's latent intention can significantly improve the performance of recommendations. Previous works model users' intentions by considering the predefined label in auxiliary information or introducing stochastic data augmentation to learn purposes in the latent space. However, the auxiliary information is sparse and not always available for recommender systems, and introducing stochastic data augmentation may introduce noise and thus change the intentions hidden in the sequence. Therefore, leveraging user intentions for sequential recommendation (SR) can be challenging because they are frequently varied and unobserved. In this paper, Intent contrastive learning with Cross Subsequences for sequential Recommendation (ICSRec) is proposed to model users' latent intentions. Specifically, ICSRec first segments a user's sequential behaviors into multiple subsequences by using a dynamic sliding operation and takes these subsequences into the encoder to generate the representations for the user's intentions. To tackle the problem of no explicit labels for purposes, ICSRec assumes different subsequences with the same target item may represent the same intention and proposes a coarse-grain intent contrastive learning to push these subsequences closer. Then, fine-grain intent contrastive learning is mentioned to capture the fine-grain intentions of subsequences in sequential behaviors. Extensive experiments conducted on four real-world datasets demonstrate the superior performance of the proposed ICSRec model compared with baseline methods.

* 10pages, 5figures, WSDM2024. arXiv admin note: text overlap with arXiv:2304.07763 
Viaarxiv icon

Meta-optimized Joint Generative and Contrastive Learning for Sequential Recommendation

Oct 21, 2023
Yongjing Hao, Pengpeng Zhao, Junhua Fang, Jianfeng Qu, Guanfeng Liu, Fuzhen Zhuang, Victor S. Sheng, Xiaofang Zhou

Sequential Recommendation (SR) has received increasing attention due to its ability to capture user dynamic preferences. Recently, Contrastive Learning (CL) provides an effective approach for sequential recommendation by learning invariance from different views of an input. However, most existing data or model augmentation methods may destroy semantic sequential interaction characteristics and often rely on the hand-crafted property of their contrastive view-generation strategies. In this paper, we propose a Meta-optimized Seq2Seq Generator and Contrastive Learning (Meta-SGCL) for sequential recommendation, which applies the meta-optimized two-step training strategy to adaptive generate contrastive views. Specifically, Meta-SGCL first introduces a simple yet effective augmentation method called Sequence-to-Sequence (Seq2Seq) generator, which treats the Variational AutoEncoders (VAE) as the view generator and can constitute contrastive views while preserving the original sequence's semantics. Next, the model employs a meta-optimized two-step training strategy, which aims to adaptively generate contrastive views without relying on manually designed view-generation techniques. Finally, we evaluate our proposed method Meta-SGCL using three public real-world datasets. Compared with the state-of-the-art methods, our experimental results demonstrate the effectiveness of our model and the code is available.

Viaarxiv icon

Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation

Aug 29, 2023
Meng Yuan, Fuzhen Zhuang, Zhao Zhang, Deqing Wang, Jin Dong

Figure 1 for Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation
Figure 2 for Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation
Figure 3 for Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation
Figure 4 for Knowledge-based Multiple Adaptive Spaces Fusion for Recommendation

Since Knowledge Graphs (KGs) contain rich semantic information, recently there has been an influx of KG-enhanced recommendation methods. Most of existing methods are entirely designed based on euclidean space without considering curvature. However, recent studies have revealed that a tremendous graph-structured data exhibits highly non-euclidean properties. Motivated by these observations, in this work, we propose a knowledge-based multiple adaptive spaces fusion method for recommendation, namely MCKG. Unlike existing methods that solely adopt a specific manifold, we introduce the unified space that is compatible with hyperbolic, euclidean and spherical spaces. Furthermore, we fuse the multiple unified spaces in an attention manner to obtain the high-quality embeddings for better knowledge propagation. In addition, we propose a geometry-aware optimization strategy which enables the pull and push processes benefited from both hyperbolic and spherical spaces. Specifically, in hyperbolic space, we set smaller margins in the area near to the origin, which is conducive to distinguishing between highly similar positive items and negative ones. At the same time, we set larger margins in the area far from the origin to ensure the model has sufficient error tolerance. The similar manner also applies to spherical spaces. Extensive experiments on three real-world datasets demonstrate that the MCKG has a significant improvement over state-of-the-art recommendation methods. Further ablation experiments verify the importance of multi-space fusion and geometry-aware optimization strategy, justifying the rationality and effectiveness of MCKG.

Viaarxiv icon

Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification

Aug 10, 2023
Tao Zou, Le Yu, Leilei Sun, Bowen Du, Deqing Wang, Fuzhen Zhuang

Figure 1 for Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification
Figure 2 for Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification
Figure 3 for Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification
Figure 4 for Adaptive Taxonomy Learning and Historical Patterns Modelling for Patent Classification

Patent classification aims to assign multiple International Patent Classification (IPC) codes to a given patent. Recent methods for automatically classifying patents mainly focus on analyzing the text descriptions of patents. However, apart from the texts, each patent is also associated with some assignees, and the knowledge of their applied patents is often valuable for classification. Furthermore, the hierarchical taxonomy formulated by the IPC system provides important contextual information and enables models to leverage the correlations between IPC codes for more accurate classification. However, existing methods fail to incorporate the above aspects. In this paper, we propose an integrated framework that comprehensively considers the information on patents for patent classification. To be specific, we first present an IPC codes correlations learning module to derive their semantic representations via adaptively passing and aggregating messages within the same level and across different levels along the hierarchical taxonomy. Moreover, we design a historical application patterns learning component to incorporate the corresponding assignee's previous patents by a dual channel aggregation mechanism. Finally, we combine the contextual information of patent texts that contains the semantics of IPC codes, and assignees' sequential preferences to make predictions. Experiments on real-world datasets demonstrate the superiority of our approach over the existing methods. Besides, we present the model's ability to capture the temporal patterns of assignees and the semantic dependencies among IPC codes.

* 13 pages 
Viaarxiv icon

Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction

Aug 04, 2023
Tao Zou, Le Yu, Leilei Sun, Bowen Du, Deqing Wang, Fuzhen Zhuang

Figure 1 for Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction
Figure 2 for Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction
Figure 3 for Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction
Figure 4 for Event-based Dynamic Graph Representation Learning for Patent Application Trend Prediction

Accurate prediction of what types of patents that companies will apply for in the next period of time can figure out their development strategies and help them discover potential partners or competitors in advance. Although important, this problem has been rarely studied in previous research due to the challenges in modelling companies' continuously evolving preferences and capturing the semantic correlations of classification codes. To fill in this gap, we propose an event-based dynamic graph learning framework for patent application trend prediction. In particular, our method is founded on the memorable representations of both companies and patent classification codes. When a new patent is observed, the representations of the related companies and classification codes are updated according to the historical memories and the currently encoded messages. Moreover, a hierarchical message passing mechanism is provided to capture the semantic proximities of patent classification codes by updating their representations along the hierarchical taxonomy. Finally, the patent application trend is predicted by aggregating the representations of the target company and classification codes from static, dynamic, and hierarchical perspectives. Experiments on real-world data demonstrate the effectiveness of our approach under various experimental conditions, and also reveal the abilities of our method in learning semantics of classification codes and tracking technology developing trajectories of companies.

* 13 pages 
Viaarxiv icon

Scaling Sentence Embeddings with Large Language Models

Jul 31, 2023
Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing Wang, Fuzhen Zhuang

Figure 1 for Scaling Sentence Embeddings with Large Language Models
Figure 2 for Scaling Sentence Embeddings with Large Language Models
Figure 3 for Scaling Sentence Embeddings with Large Language Models
Figure 4 for Scaling Sentence Embeddings with Large Language Models

Large language models (LLMs) have recently garnered significant interest. With in-context learning, LLMs achieve impressive results in various natural language tasks. However, the application of LLMs to sentence embeddings remains an area of ongoing research. In this work, we propose an in-context learning-based method aimed at improving sentence embeddings performance. Our approach involves adapting the previous prompt-based representation method for autoregressive models, constructing a demonstration set that enables LLMs to perform in-context learning, and scaling up the LLMs to different model sizes. Through extensive experiments, in-context learning enables LLMs to generate high-quality sentence embeddings without any fine-tuning. It helps LLMs achieve performance comparable to current contrastive learning methods. By scaling model size, we find scaling to more than tens of billion parameters harms the performance on semantic textual similarity (STS) tasks. However, the largest model outperforms other counterparts and achieves the new state-of-the-art result on transfer tasks. We also fine-tune LLMs with current contrastive learning approach, and the 2.7B OPT model, incorporating our prompt-based method, surpasses the performance of 4.8B ST5, achieving the new state-of-the-art results on STS tasks. Our code is available at https://github.com/kongds/scaling_sentemb.

Viaarxiv icon

Modeling Dual Period-Varying Preferences for Takeaway Recommendation

Jun 16, 2023
Yuting Zhang, Yiqing Wu, Ran Le, Yongchun Zhu, Fuzhen Zhuang, Ruidong Han, Xiang Li, Wei Lin, Zhulin An, Yongjun Xu

Figure 1 for Modeling Dual Period-Varying Preferences for Takeaway Recommendation
Figure 2 for Modeling Dual Period-Varying Preferences for Takeaway Recommendation
Figure 3 for Modeling Dual Period-Varying Preferences for Takeaway Recommendation
Figure 4 for Modeling Dual Period-Varying Preferences for Takeaway Recommendation

Takeaway recommender systems, which aim to accurately provide stores that offer foods meeting users' interests, have served billions of users in our daily life. Different from traditional recommendation, takeaway recommendation faces two main challenges: (1) Dual Interaction-Aware Preference Modeling. Traditional recommendation commonly focuses on users' single preferences for items while takeaway recommendation needs to comprehensively consider users' dual preferences for stores and foods. (2) Period-Varying Preference Modeling. Conventional recommendation generally models continuous changes in users' preferences from a session-level or day-level perspective. However, in practical takeaway systems, users' preferences vary significantly during the morning, noon, night, and late night periods of the day. To address these challenges, we propose a Dual Period-Varying Preference modeling (DPVP) for takeaway recommendation. Specifically, we design a dual interaction-aware module, aiming to capture users' dual preferences based on their interactions with stores and foods. Moreover, to model various preferences in different time periods of the day, we propose a time-based decomposition module as well as a time-aware gating mechanism. Extensive offline and online experiments demonstrate that our model outperforms state-of-the-art methods on real-world datasets and it is capable of modeling the dual period-varying preferences. Moreover, our model has been deployed online on Meituan Takeaway platform, leading to an average improvement in GMV (Gross Merchandise Value) of 0.70%.

* accepted by KDD (The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining) 2023 Applied Data Science (ADS) track 
Viaarxiv icon