Abstract:As post-training optimization becomes central to improving large language models, we observe a persistent saturation bottleneck: once models grow highly confident, further training yields diminishing returns. While existing methods continue to reinforce target predictions, we find that informative supervision signals remain latent in models' own historical weak states. Motivated by this observation, we propose WMSS (Weak Agents Can Make Strong Agents Stronger), a post-training paradigm that leverages weak checkpoints to guide continued optimization. By identifying recoverable learning gaps via entropy dynamics and reinforcing them through compensatory learning, WMSS enables strong agents to improve beyond conventional post-training saturation. Experiments on mathematical reasoning and code generation datasets show that agents trained with our approach achieve effective performance improvements, while incurring zero additional inference cost.
Abstract:Recent advancements in large reasoning models (LRMs) have greatly improved their capabilities on complex reasoning tasks through Long Chains of Thought (CoTs). However, this approach often results in substantial redundancy, impairing computational efficiency and causing significant delays in real-time applications. Recent studies show that longer reasoning chains are frequently uncorrelated with correctness and can even be detrimental to accuracy. In a further in-depth analysis of this phenomenon, we surprisingly uncover and empirically verify that LRMs implicitly know the appropriate time to stop thinking, while this capability is obscured by current sampling paradigms. Motivated by this, we introduce SAGE (Self-Aware Guided Efficient Reasoning), a novel sampling paradigm that unleashes this efficient reasoning potential. Furthermore, integrating SAGE as mixed sampling into group-based reinforcement learning (SAGE-RL) enables SAGE-RL to effectively incorporate SAGE-discovered efficient reasoning patterns into standard pass@1 inference, markedly enhancing both the reasoning accuracy and efficiency of LRMs across multiple challenging mathematical benchmarks.
Abstract:Reinforcement Learning with Verifiable Rewards (RLVR) is an effective paradigm for improving the reasoning capabilities of large language models. However, existing RLVR methods utilize rollouts in an indiscriminate and short-horizon manner: responses of heterogeneous quality within each prompt are treated uniformly, and historical rollouts are discarded after a single use. This leads to noisy supervision, poor sample efficiency, and suboptimal policy updates. We address these issues by formulating rollout scheduling in RLVR as a contextual bandit problem and proposing a unified neural scheduling framework that adaptively selects high-value rollouts throughout training. Each rollout is treated as an arm whose reward is defined by the induced performance gain between consecutive optimization steps. The resulting scheduler supports both noise-aware intra-group selection and adaptive global reuse of historical rollouts within a single principled framework. We provide theoretical justification by deriving sublinear regret bounds and showing that enlarging the rollout buffer improves the achievable performance upper bound. Experiments on six mathematical reasoning benchmarks demonstrate consistent gains in performance and training efficiency across multiple RLVR optimization methods.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is a pivotal technique for aligning large language models (LLMs) with human preferences, yet it is susceptible to reward overoptimization, in which policy models overfit to the reward model, exploit spurious reward patterns instead of faithfully capturing human intent. Prior mitigations primarily relies on surface semantic information and fails to efficiently address the misalignment between the reward model (RM) and the policy model caused by continuous policy distribution shifts. This inevitably leads to an increasing reward discrepancy, exacerbating reward overoptimization. To address these limitations, we introduce R2M (Real-Time Aligned Reward Model), a novel lightweight RLHF framework. R2M goes beyond vanilla reward models that solely depend on the semantic representations of a pretrained LLM. Instead, it leverages the evolving hidden states of the policy (namely policy feedback) to align with the real-time distribution shift of the policy during the RL process. This work points to a promising new direction for improving the performance of reward models through real-time utilization of feedback from policy models.
Abstract:LLMs have garnered substantial attention in recommendation systems. Yet they fall short of traditional recommenders when capturing complex preference patterns. Recent works have tried integrating traditional recommendation embeddings into LLMs to resolve this issue, yet a core gap persists between their continuous embedding and discrete semantic spaces. Intuitively, textual attributes derived from interactions can serve as critical preference rationales for LLMs' recommendation logic. However, directly inputting such attribute knowledge presents two core challenges: (1) Deficiency of sparse interactions in reflecting preference hints for unseen items; (2) Substantial noise introduction from treating all attributes as hints. To this end, we propose a preference hint discovery model based on the interaction-integrated knowledge graph, enhancing LLM-based recommendation. It utilizes traditional recommendation principles to selectively extract crucial attributes as hints. Specifically, we design a collaborative preference hint extraction schema, which utilizes semantic knowledge from similar users' explicit interactions as hints for unseen items. Furthermore, we develop an instance-wise dual-attention mechanism to quantify the preference credibility of candidate attributes, identifying hints specific to each unseen item. Using these item- and user-based hints, we adopt a flattened hint organization method to shorten input length and feed the textual hint information to the LLM for commonsense reasoning. Extensive experiments on both pair-wise and list-wise recommendation tasks verify the effectiveness of our proposed framework, indicating an average relative improvement of over 3.02% against baselines.
Abstract:Reinforcement Learning from Verifier Rewards (RLVR) has emerged as a widely used approach for post-training large language models on reasoning tasks, with group-based methods such as GRPO and its variants gaining broad adoption. These methods rely on group-relative advantage estimation to avoid learned critics, yet its theoretical properties remain poorly understood. In this work, we uncover a fundamental issue of group-based RL: the group-relative advantage estimator is inherently biased relative to the true (expected) advantage. We provide the first theoretical analysis showing that it systematically underestimates advantages for hard prompts and overestimates them for easy prompts, leading to imbalanced exploration and exploitation. To address this issue, we propose History-Aware Adaptive Difficulty Weighting (HA-DW), an adaptive reweighting scheme that adjusts advantage estimates based on an evolving difficulty anchor and training dynamics. Both theoretical analysis and experiments on five mathematical reasoning benchmarks demonstrate that HA-DW consistently improves performance when integrated into GRPO and its variants. Our results suggest that correcting biased advantage estimation is critical for robust and efficient RLVR training.
Abstract:Ensemble learning of LLMs has emerged as a promising alternative to enhance performance, but existing approaches typically treat models as black boxes, combining the inputs or final outputs while overlooking the rich internal representations and interactions across models.In this work, we introduce LLMBoost, a novel ensemble fine-tuning framework that breaks this barrier by explicitly leveraging intermediate states of LLMs. Inspired by the boosting paradigm, LLMBoost incorporates three key innovations. First, a cross-model attention mechanism enables successor models to access and fuse hidden states from predecessors, facilitating hierarchical error correction and knowledge transfer. Second, a chain training paradigm progressively fine-tunes connected models with an error-suppression objective, ensuring that each model rectifies the mispredictions of its predecessor with minimal additional computation. Third, a near-parallel inference paradigm design pipelines hidden states across models layer by layer, achieving inference efficiency approaching single-model decoding. We further establish the theoretical foundations of LLMBoost, proving that sequential integration guarantees monotonic improvements under bounded correction assumptions. Extensive experiments on commonsense reasoning and arithmetic reasoning tasks demonstrate that LLMBoost consistently boosts accuracy while reducing inference latency.




Abstract:Spectral graph neural networks (GNNs) are highly effective in modeling graph signals, with their success in recommendation often attributed to low-pass filtering. However, recent studies highlight the importance of high-frequency signals. The role of low-frequency and high-frequency graph signals in recommendation remains unclear. This paper aims to bridge this gap by investigating the influence of graph signals on recommendation performance. We theoretically prove that the effects of low-frequency and high-frequency graph signals are equivalent in recommendation tasks, as both contribute by smoothing the similarities between user-item pairs. To leverage this insight, we propose a frequency signal scaler, a plug-and-play module that adjusts the graph signal filter function to fine-tune the smoothness between user-item pairs, making it compatible with any GNN model. Additionally, we identify and prove that graph embedding-based methods cannot fully capture the characteristics of graph signals. To address this limitation, a space flip method is introduced to restore the expressive power of graph embeddings. Remarkably, we demonstrate that either low-frequency or high-frequency graph signals alone are sufficient for effective recommendations. Extensive experiments on four public datasets validate the effectiveness of our proposed methods. Code is avaliable at https://github.com/mojosey/SimGCF.
Abstract:Generative Recommendation (GR) has emerged as a new paradigm in recommender systems. This approach relies on quantized representations to discretize item features, modeling users' historical interactions as sequences of discrete tokens. Based on these tokenized sequences, GR predicts the next item by employing next-token prediction methods. The challenges of GR lie in constructing high-quality semantic identifiers (IDs) that are hierarchically organized, minimally conflicting, and conducive to effective generative model training. However, current approaches remain limited in their ability to harness multimodal information and to capture the deep and intricate interactions among diverse modalities, both of which are essential for learning high-quality semantic IDs and for effectively training GR models. To address this, we propose Multi-Aspect Cross-modal quantization for generative Recommendation (MACRec), which introduces multimodal information and incorporates it into both semantic ID learning and generative model training from different aspects. Specifically, we first introduce cross-modal quantization during the ID learning process, which effectively reduces conflict rates and thus improves codebook usability through the complementary integration of multimodal information. In addition, to further enhance the generative ability of our GR model, we incorporate multi-aspect cross-modal alignments, including the implicit and explicit alignments. Finally, we conduct extensive experiments on three well-known recommendation datasets to demonstrate the effectiveness of our proposed method.
Abstract:Scientific document representation learning provides powerful embeddings for various tasks, while current methods face challenges across three approaches. 1) Contrastive training with citation-structural signals underutilizes citation information and still generates single-vector representations. 2) Fine-grained representation learning, which generates multiple vectors at the sentence or aspect level, requires costly integration and lacks domain generalization. 3) Task-aware learning depends on manually predefined task categorization, overlooking nuanced task distinctions and requiring extra training data for task-specific modules. To address these problems, we propose a new method that unifies the three approaches for better representations, namely FLeW. Specifically, we introduce a novel triplet sampling method that leverages citation intent and frequency to enhance citation-structural signals for training. Citation intents (background, method, result), aligned with the general structure of scientific writing, facilitate a domain-generalized facet partition for fine-grained representation learning. Then, we adopt a simple weight search to adaptively integrate three facet-level embeddings into a task-specific document embedding without task-aware fine-tuning. Experiments show the applicability and robustness of FLeW across multiple scientific tasks and fields, compared to prior models.