Abstract:Irregular Multivariate Time Series (IMTS) forecasting is challenging due to the unaligned nature of multi-channel signals and the prevalence of extensive missing data. Existing methods struggle to capture reliable temporal patterns from such data due to significant missing values. While pre-trained foundation models show potential for addressing these challenges, they are typically designed for Regularly Sampled Time Series (RTS). Motivated by the visual Mask AutoEncoder's (MAE) powerful capability for modeling sparse multi-channel information and its success in RTS forecasting, we propose VIMTS, a framework adapting Visual MAE for IMTS forecasting. To mitigate the effect of missing values, VIMTS first processes IMTS along the timeline into feature patches at equal intervals. These patches are then complemented using learned cross-channel dependencies. Then it leverages visual MAE's capability in handling sparse multichannel data for patch reconstruction, followed by a coarse-to-fine technique to generate precise predictions from focused contexts. In addition, we integrate self-supervised learning for improved IMTS modeling by adapting the visual MAE to IMTS data. Extensive experiments demonstrate VIMTS's superior performance and few-shot capability, advancing the application of visual foundation models in more general time series tasks. Our code is available at https://github.com/WHU-HZY/VIMTS.
Abstract:Concept Bottleneck Models (CBMs) enhance model interpretability by introducing human-understandable concepts within the architecture. However, existing CBMs assume static datasets, limiting their ability to adapt to real-world, continuously evolving data streams. To address this, we define a novel concept-incremental and class-incremental continual learning task for CBMs, enabling models to accumulate new concepts and classes over time while retaining previously learned knowledge. To achieve this, we propose CONceptual Continual Incremental Learning (CONCIL), a framework that prevents catastrophic forgetting by reformulating concept and decision layer updates as linear regression problems, thus eliminating the need for gradient-based updates. CONCIL requires only recursive matrix operations, making it computationally efficient and suitable for real-time and large-scale data applications. Experimental results demonstrate that CONCIL achieves "absolute knowledge memory" and outperforms traditional CBM methods in concept- and class-incremental settings, establishing a new benchmark for continual learning in CBMs.
Abstract:Neural Radiance Fields (NeRF) accomplishes photo-realistic novel view synthesis by learning the implicit volumetric representation of a scene from multi-view images, which faithfully convey the colorimetric information. However, sensor noises will contaminate low-value pixel signals, and the lossy camera image signal processor will further remove near-zero intensities in extremely dark situations, deteriorating the synthesis performance. Existing approaches reconstruct low-light scenes from raw images but struggle to recover texture and boundary details in dark regions. Additionally, they are unsuitable for high-speed models relying on explicit representations. To address these issues, we present Thermal-NeRF, which takes thermal and visible raw images as inputs, considering the thermal camera is robust to the illumination variation and raw images preserve any possible clues in the dark, to accomplish visible and thermal view synthesis simultaneously. Also, the first multi-view thermal and visible dataset (MVTV) is established to support the research on multimodal NeRF. Thermal-NeRF achieves the best trade-off between detail preservation and noise smoothing and provides better synthesis performance than previous work. Finally, we demonstrate that both modalities are beneficial to each other in 3D reconstruction.