Abstract:As large language models (LLMs) transition from general knowledge retrieval to complex scientific discovery, their evaluation standards must also incorporate the rigorous norms of scientific inquiry. Existing benchmarks exhibit a critical blind spot: general instruction-following metrics focus on superficial formatting, while domain-specific scientific benchmarks assess only final-answer correctness, often rewarding models that arrive at the right result with the wrong reasons. To address this gap, we introduce scientific instruction following: the capability to solve problems while strictly adhering to the constraints that establish scientific validity. Specifically, we introduce SciIF, a multi-discipline benchmark that evaluates this capability by pairing university-level problems with a fixed catalog of constraints across three pillars: scientific conditions (e.g., boundary checks and assumptions), semantic stability (e.g., unit and symbol conventions), and specific processes(e.g., required numerical methods). Uniquely, SciIF emphasizes auditability, requiring models to provide explicit evidence of constraint satisfaction rather than implicit compliance. By measuring both solution correctness and multi-constraint adherence, SciIF enables finegrained diagnosis of compositional reasoning failures, ensuring that LLMs can function as reliable agents within the strict logical frameworks of science.




Abstract:Large language models (LLMs) are increasingly used in scientific domains. While they can produce reasoning-like content via methods such as chain-of-thought prompting, these outputs are typically unstructured and informal, obscuring whether models truly understand the fundamental reasoning paradigms that underpin scientific inference. To address this, we introduce a novel task named Latent Reasoning Chain Extraction (ARCHE), in which models must decompose complex reasoning arguments into combinations of standard reasoning paradigms in the form of a Reasoning Logic Tree (RLT). In RLT, all reasoning steps are explicitly categorized as one of three variants of Peirce's fundamental inference modes: deduction, induction, or abduction. To facilitate this task, we release ARCHE Bench, a new benchmark derived from 70 Nature Communications articles, including more than 1,900 references and 38,000 viewpoints. We propose two logic-aware evaluation metrics: Entity Coverage (EC) for content completeness and Reasoning Edge Accuracy (REA) for step-by-step logical validity. Evaluations on 10 leading LLMs on ARCHE Bench reveal that models exhibit a trade-off between REA and EC, and none are yet able to extract a complete and standard reasoning chain. These findings highlight a substantial gap between the abilities of current reasoning models and the rigor required for scientific argumentation.




Abstract:Automated discovery of physical laws from observational data in the real world is a grand challenge in AI. Current methods, relying on symbolic regression or LLMs, are limited to uni-modal data and overlook the rich, visual phenomenological representations of motion that are indispensable to physicists. This "sensory deprivation" severely weakens their ability to interpret the inherent spatio-temporal patterns within dynamic phenomena. To address this gap, we propose VIPER-R1, a multimodal model that performs Visual Induction for Physics-based Equation Reasoning to discover fundamental symbolic formulas. It integrates visual perception, trajectory data, and symbolic reasoning to emulate the scientific discovery process. The model is trained via a curriculum of Motion Structure Induction (MSI), using supervised fine-tuning to interpret kinematic phase portraits and to construct hypotheses guided by a Causal Chain of Thought (C-CoT), followed by Reward-Guided Symbolic Calibration (RGSC) to refine the formula structure with reinforcement learning. During inference, the trained VIPER-R1 acts as an agent: it first posits a high-confidence symbolic ansatz, then proactively invokes an external symbolic regression tool to perform Symbolic Residual Realignment (SR^2). This final step, analogous to a physicist's perturbation analysis, reconciles the theoretical model with empirical data. To support this research, we introduce PhysSymbol, a new 5,000-instance multimodal corpus. Experiments show that VIPER-R1 consistently outperforms state-of-the-art VLM baselines in accuracy and interpretability, enabling more precise discovery of physical laws. Project page: https://jiaaqiliu.github.io/VIPER-R1/
Abstract:In this paper, part of the DREAMING Challenge - Diminished Reality for Emerging Applications in Medicine through Inpainting, we introduce a refined video inpainting technique optimised from the ProPainter method to meet the specialised demands of medical imaging, specifically in the context of oral and maxillofacial surgery. Our enhanced algorithm employs the zero-shot ProPainter, featuring optimized parameters and pre-processing, to adeptly manage the complex task of inpainting surgical video sequences, without requiring any training process. It aims to produce temporally coherent and detail-rich reconstructions of occluded regions, facilitating clearer views of operative fields. The efficacy of our approach is evaluated using comprehensive metrics, positioning it as a significant advancement in the application of diminished reality for medical purposes.