Abstract:The vision-and-language navigation (VLN) task necessitates an agent to perceive the surroundings, follow natural language instructions, and act in photo-realistic unseen environments. Most of the existing methods employ the entire image or object features to represent navigable viewpoints. However, these representations are insufficient for proper action prediction, especially for the REVERIE task, which uses concise high-level instructions, such as ''Bring me the blue cushion in the master bedroom''. To address enhancing representation, we propose an augmented commonsense knowledge model (ACK) to leverage commonsense information as a spatio-temporal knowledge graph for improving agent navigation. Specifically, the proposed approach involves constructing a knowledge base by retrieving commonsense information from ConceptNet, followed by a refinement module to remove noisy and irrelevant knowledge. We further present ACK which consists of knowledge graph-aware cross-modal and concept aggregation modules to enhance visual representation and visual-textual data alignment by integrating visible objects, commonsense knowledge, and concept history, which includes object and knowledge temporal information. Moreover, we add a new pipeline for the commonsense-based decision-making process which leads to more accurate local action prediction. Experimental results demonstrate our proposed model noticeably outperforms the baseline and archives the state-of-the-art on the REVERIE benchmark.
Abstract:Graph Neural Networks (GNNs) have gained significant attention as a powerful modeling and inference method, especially for homophilic graph-structured data. To empower GNNs in heterophilic graphs, where adjacent nodes exhibit dissimilar labels or features, Signed Message Passing (SMP) has been widely adopted. However, there is a lack of theoretical and empirical analysis regarding the limitations of SMP. In this work, we unveil some potential pitfalls of SMP and their remedies. We first identify two limitations of SMP: undesirable representation update for multi-hop neighbors and vulnerability against oversmoothing issues. To overcome these challenges, we propose a novel message passing function called Multiset to Multiset GNN(M2M-GNN). Our theoretical analyses and extensive experiments demonstrate that M2M-GNN effectively alleviates the aforementioned limitations of SMP, yielding superior performance in comparison
Abstract:The Large Language Model (LLM) watermark is a newly emerging technique that shows promise in addressing concerns surrounding LLM copyright, monitoring AI-generated text, and preventing its misuse. The LLM watermark scheme commonly includes generating secret keys to partition the vocabulary into green and red lists, applying a perturbation to the logits of tokens in the green list to increase their sampling likelihood, thus facilitating watermark detection to identify AI-generated text if the proportion of green tokens exceeds a threshold. However, recent research indicates that watermarking methods using numerous keys are susceptible to removal attacks, such as token editing, synonym substitution, and paraphrasing, with robustness declining as the number of keys increases. Therefore, the state-of-the-art watermark schemes that employ fewer or single keys have been demonstrated to be more robust against text editing and paraphrasing. In this paper, we propose a novel green list stealing attack against the state-of-the-art LLM watermark scheme and systematically examine its vulnerability to this attack. We formalize the attack as a mixed integer programming problem with constraints. We evaluate our attack under a comprehensive threat model, including an extreme scenario where the attacker has no prior knowledge, lacks access to the watermark detector API, and possesses no information about the LLM's parameter settings or watermark injection/detection scheme. Extensive experiments on LLMs, such as OPT and LLaMA, demonstrate that our attack can successfully steal the green list and remove the watermark across all settings.
Abstract:Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users. However, social networks not only amplify the popularity bias in recommendation models, resulting in more frequent recommendation of hot items and fewer long-tail items, but also include a substantial amount of redundant information that is essentially meaningless for the model's performance. Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information, as they directly characterize social influence across the entire social network without making targeted adjustments. In this paper, we propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias by denoising the social network and adjusting the weights of user's social preferences. More specifically, CGSoRec first includes a Condition-Guided Social Denoising Model (CSD) to remove redundant social relations in the social network for capturing users' social preferences with items more precisely. Then, CGSoRec calculates users' social preferences based on denoised social network and adjusts the weights in users' social preferences to make them can counteract the popularity bias present in the recommendation model. At last, CGSoRec includes a Condition-Guided Diffusion Recommendation Model (CGD) to introduce the adjusted social preferences as conditions to control the recommendation results for a debiased direction. Comprehensive experiments on three real-world datasets demonstrate the effectiveness of our proposed method. The code is in: https://github.com/hexin5515/CGSoRec.
Abstract:Graph anomaly detection (GAD), which aims to identify abnormal nodes that differ from the majority within a graph, has garnered significant attention. However, current GAD methods necessitate training specific to each dataset, resulting in high training costs, substantial data requirements, and limited generalizability when being applied to new datasets and domains. To address these limitations, this paper proposes ARC, a generalist GAD approach that enables a ``one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly. Equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset using few-shot normal samples at the inference stage, without the need for retraining or fine-tuning on the target dataset. ARC comprises three components that are well-crafted for capturing universal graph anomaly patterns: 1) smoothness-based feature Alignment module that unifies the features of different datasets into a common and anomaly-sensitive space; 2) ego-neighbor Residual graph encoder that learns abnormality-related node embeddings; and 3) cross-attentive in-Context anomaly scoring module that predicts node abnormality by leveraging few-shot normal samples. Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
Abstract:Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data. Meanwhile, the advent of dynamic graph neural networks (DGNNs) marks a significant advancement due to their superior capability in learning from dynamic graphs, which encapsulate spatial-temporal variations in diverse real-world applications (e.g., traffic forecasting). With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning. However, current graph unlearning methodologies are designed for GNNs operating on static graphs and exhibit limitations including their serving in a pre-processing manner and impractical resource demands. Furthermore, the adaptation of these methods to DGNNs presents non-trivial challenges, owing to the distinctive nature of dynamic graphs. To this end, we propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning. Specifically, we first define the unlearning requests and formulate dynamic graph unlearning in the context of continuous-time dynamic graphs. After conducting a role analysis on the unlearning data, the remaining data, and the target DGNN model, we propose a method called Gradient Transformation and a loss function to map the unlearning request to the desired parameter update. Evaluations on six real-world datasets and state-of-the-art DGNN backbones demonstrate its effectiveness (e.g., limited performance drop even obvious improvement) and efficiency (e.g., at most 7.23$\times$ speed-up) outperformance, and potential advantages in handling future unlearning requests (e.g., at most 32.59$\times$ speed-up).
Abstract:Drug-target interaction (DTI) prediction is a critical component of the drug discovery process. In the drug development engineering field, predicting novel drug-target interactions is extremely crucial.However, although existing methods have achieved high accuracy levels in predicting known drugs and drug targets, they fail to utilize global protein information during DTI prediction. This leads to an inability to effectively predict interaction the interactions between novel drugs and their targets. As a result, the cross-field information fusion strategy is employed to acquire local and global protein information. Thus, we propose the siamese drug-target interaction SiamDTI prediction method, which utilizes a double channel network structure for cross-field supervised learning.Experimental results on three benchmark datasets demonstrate that SiamDTI achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.Additionally, SiamDTI's performance with known drugs and targets is comparable to that of SOTA approachs. The code is available at https://anonymous.4open.science/r/DDDTI-434D.
Abstract:Drug response prediction (DRP) is a crucial phase in drug discovery, and the most important metric for its evaluation is the IC50 score. DRP results are heavily dependent on the quality of the generated molecules. Existing molecule generation methods typically employ classifier-based guidance, enabling sampling within the IC50 classification range. However, these methods fail to ensure the sampling space range's effectiveness, generating numerous ineffective molecules. Through experimental and theoretical study, we hypothesize that conditional generation based on the target IC50 score can obtain a more effective sampling space. As a result, we introduce regressor-free guidance molecule generation to ensure sampling within a more effective space and support DRP. Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels. To effectively map regression labels between drugs and cell lines, we design a common-sense numerical knowledge graph that constrains the order of text representations. Experimental results on the real-world dataset for the DRP task demonstrate our method's effectiveness in drug discovery. The code is available at:https://anonymous.4open.science/r/RMCD-DBD1.
Abstract:Graph Neural Networks (GNNs) have demonstrated superior performance across various graph learning tasks but face significant computational challenges when applied to large-scale graphs. One effective approach to mitigate these challenges is graph sparsification, which involves removing non-essential edges to reduce computational overhead. However, previous graph sparsification methods often rely on a single global sparsity setting and uniform pruning criteria, failing to provide customized sparsification schemes for each node's complex local context. In this paper, we introduce Mixture-of-Graphs (MoG), leveraging the concept of Mixture-of-Experts (MoE), to dynamically select tailored pruning solutions for each node. Specifically, MoG incorporates multiple sparsifier experts, each characterized by unique sparsity levels and pruning criteria, and selects the appropriate experts for each node. Subsequently, MoG performs a mixture of the sparse graphs produced by different experts on the Grassmann manifold to derive an optimal sparse graph. One notable property of MoG is its entirely local nature, as it depends on the specific circumstances of each individual node. Extensive experiments on four large-scale OGB datasets and two superpixel datasets, equipped with five GNN backbones, demonstrate that MoG (I) identifies subgraphs at higher sparsity levels ($8.67\%\sim 50.85\%$), with performance equal to or better than the dense graph, (II) achieves $1.47-2.62\times$ speedup in GNN inference with negligible performance drop, and (III) boosts ``top-student'' GNN performance ($1.02\%\uparrow$ on RevGNN+\textsc{ogbn-proteins} and $1.74\%\uparrow$ on DeeperGCN+\textsc{ogbg-ppa}).
Abstract:Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learning-based TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers. Nonetheless, LLMs are known to function as black boxes, making it challenging to comprehend their reasoning process. Additionally, due to the resource-intensive nature of fine-tuning, promptly updating LLMs to integrate evolving knowledge within TKGs for reasoning is impractical. To address these challenges, in this paper, we propose a Large Language Models-guided Dynamic Adaptation (LLM-DA) method for reasoning on TKGs. Specifically, LLM-DA harnesses the capabilities of LLMs to analyze historical data and extract temporal logical rules. These rules unveil temporal patterns and facilitate interpretable reasoning. To account for the evolving nature of TKGs, a dynamic adaptation strategy is proposed to update the LLM-generated rules with the latest events. This ensures that the extracted rules always incorporate the most recent knowledge and better generalize to the predictions on future events. Experimental results show that without the need of fine-tuning, LLM-DA significantly improves the accuracy of reasoning over several common datasets, providing a robust framework for TKGR tasks.