Abstract:Large Language Model (LLM)-based agentic systems, often comprising multiple models, complex tool invocations, and orchestration protocols, substantially outperform monolithic agents. Yet this very sophistication amplifies their fragility, making them more prone to system failure. Pinpointing the specific agent or step responsible for an error within long execution traces defines the task of agentic system failure attribution. Current state-of-the-art reasoning LLMs, however, remain strikingly inadequate for this challenge, with accuracy generally below 10%. To address this gap, we propose AgenTracer, the first automated framework for annotating failed multi-agent trajectories via counterfactual replay and programmed fault injection, producing the curated dataset TracerTraj. Leveraging this resource, we develop AgenTracer-8B, a lightweight failure tracer trained with multi-granular reinforcement learning, capable of efficiently diagnosing errors in verbose multi-agent interactions. On the Who&When benchmark, AgenTracer-8B outperforms giant proprietary LLMs like Gemini-2.5-Pro and Claude-4-Sonnet by up to 18.18%, setting a new standard in LLM agentic failure attribution. More importantly, AgenTracer-8B delivers actionable feedback to off-the-shelf multi-agent systems like MetaGPT and MaAS with 4.8-14.2% performance gains, empowering self-correcting and self-evolving agentic AI.
Abstract:Complex and diverse ultrastructural features can indicate the type, progression, and prognosis of kidney diseases. Recently, computational pathology combined with deep learning methods has shown tremendous potential in advancing automatic morphological analysis of glomerular ultrastructure. However, current research predominantly focuses on the recognition of individual ultrastructure, which makes it challenging to meet practical diagnostic needs. In this study, we propose the glomerular morphometry framework of ultrastructural characterization (Glo-DMU), which is grounded on three deep models: the ultrastructure segmentation model, the glomerular filtration barrier region classification model, and the electron-dense deposits detection model. Following the conventional protocol of renal biopsy diagnosis, this framework simultaneously quantifies the three most widely used ultrastructural features: the thickness of glomerular basement membrane, the degree of foot process effacement, and the location of electron-dense deposits. We evaluated the 115 patients with 9 renal pathological types in real-world diagnostic scenarios, demonstrating good consistency between automatic quantification results and morphological descriptions in the pathological reports. Glo-DMU possesses the characteristics of full automation, high precision, and high throughput, quantifying multiple ultrastructural features simultaneously, and providing an efficient tool for assisting renal pathologists.
Abstract:Recent advances in large language models have sparked growing interest in AI agents capable of solving complex, real-world tasks. However, most existing agent systems rely on manually crafted configurations that remain static after deployment, limiting their ability to adapt to dynamic and evolving environments. To this end, recent research has explored agent evolution techniques that aim to automatically enhance agent systems based on interaction data and environmental feedback. This emerging direction lays the foundation for self-evolving AI agents, which bridge the static capabilities of foundation models with the continuous adaptability required by lifelong agentic systems. In this survey, we provide a comprehensive review of existing techniques for self-evolving agentic systems. Specifically, we first introduce a unified conceptual framework that abstracts the feedback loop underlying the design of self-evolving agentic systems. The framework highlights four key components: System Inputs, Agent System, Environment, and Optimisers, serving as a foundation for understanding and comparing different strategies. Based on this framework, we systematically review a wide range of self-evolving techniques that target different components of the agent system. We also investigate domain-specific evolution strategies developed for specialised fields such as biomedicine, programming, and finance, where optimisation objectives are tightly coupled with domain constraints. In addition, we provide a dedicated discussion on the evaluation, safety, and ethical considerations for self-evolving agentic systems, which are critical to ensuring their effectiveness and reliability. This survey aims to provide researchers and practitioners with a systematic understanding of self-evolving AI agents, laying the foundation for the development of more adaptive, autonomous, and lifelong agentic systems.
Abstract:Large language model (LLM)-powered multi-agent systems (MAS) have demonstrated cognitive and execution capabilities that far exceed those of single LLM agents, yet their capacity for self-evolution remains hampered by underdeveloped memory architectures. Upon close inspection, we are alarmed to discover that prevailing MAS memory mechanisms (1) are overly simplistic, completely disregarding the nuanced inter-agent collaboration trajectories, and (2) lack cross-trial and agent-specific customization, in stark contrast to the expressive memory developed for single agents. To bridge this gap, we introduce G-Memory, a hierarchical, agentic memory system for MAS inspired by organizational memory theory, which manages the lengthy MAS interaction via a three-tier graph hierarchy: insight, query, and interaction graphs. Upon receiving a new user query, G-Memory performs bi-directional memory traversal to retrieve both $\textit{high-level, generalizable insights}$ that enable the system to leverage cross-trial knowledge, and $\textit{fine-grained, condensed interaction trajectories}$ that compactly encode prior collaboration experiences. Upon task execution, the entire hierarchy evolves by assimilating new collaborative trajectories, nurturing the progressive evolution of agent teams. Extensive experiments across five benchmarks, three LLM backbones, and three popular MAS frameworks demonstrate that G-Memory improves success rates in embodied action and accuracy in knowledge QA by up to $20.89\%$ and $10.12\%$, respectively, without any modifications to the original frameworks. Our codes are available at https://github.com/bingreeky/GMemory.
Abstract:Large language models require iterative updates to address challenges such as knowledge conflicts and outdated information (e.g., incorrect, private, or illegal contents). Machine unlearning provides a systematic methodology for targeted knowledge removal from trained models, enabling elimination of sensitive information influences. However, mainstream fine-tuning-based unlearning methods often fail to balance unlearning efficacy and model ability, frequently resulting in catastrophic model collapse under extensive knowledge removal. Meanwhile, in-context unlearning, which relies solely on contextual prompting without modifying the model's intrinsic mechanisms, suffers from limited generalizability and struggles to achieve true unlearning. In this work, we introduce UniErase, a novel unlearning paradigm that employs learnable parametric suffix (unlearning token) to steer language models toward targeted forgetting behaviors. UniErase operates through two key phases: (I) an optimization stage that binds desired unlearning outputs to the model's autoregressive probability distribution via token optimization, followed by (II) a lightweight model editing phase that activates the learned token to probabilistically induce specified forgetting objective. Serving as a new research direction for token learning to induce unlearning target, UniErase achieves state-of-the-art (SOTA) performance across batch, sequential, and precise unlearning under fictitious and real-world knowledge settings. Remarkably, in terms of TOFU benchmark, UniErase, modifying only around 3.66% of the LLM parameters, outperforms previous forgetting SOTA baseline by around 4.01 times for model ability with even better unlearning efficacy. Similarly, UniErase, maintaining more ability, also surpasses previous retaining SOTA by 35.96% for unlearning efficacy, showing dual top-tier performances in current unlearing domain.
Abstract:The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
Abstract:Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
Abstract:LLM-based Multi-Agent Systems (MAS) have proven highly effective in solving complex problems by integrating multiple agents, each performing different roles. However, in sensitive domains, they face emerging privacy protection challenges. In this paper, we introduce the concept of Federated MAS, highlighting the fundamental differences between Federated MAS and traditional FL. We then identify key challenges in developing Federated MAS, including: 1) heterogeneous privacy protocols among agents, 2) structural differences in multi-party conversations, and 3) dynamic conversational network structures. To address these challenges, we propose Embedded Privacy-Enhancing Agents (EPEAgent), an innovative solution that integrates seamlessly into the Retrieval-Augmented Generation (RAG) phase and the context retrieval stage. This solution minimizes data flows, ensuring that only task-relevant, agent-specific information is shared. Additionally, we design and generate a comprehensive dataset to evaluate the proposed paradigm. Extensive experiments demonstrate that EPEAgent effectively enhances privacy protection while maintaining strong system performance. The code will be availiable at https://github.com/ZitongShi/EPEAgent
Abstract:The past two years have witnessed the evolution of large language model (LLM)-based multi-agent systems from labor-intensive manual design to partial automation (\textit{e.g.}, prompt engineering, communication topology) and eventually to fully automated design. However, existing agentic automation pipelines often lack LLM heterogeneity and focus on single-objective performance optimization, limiting their potential to combine weaker models for more customized and cost-effective solutions. To address this challenge, we propose EvoFlow, a niching evolutionary algorithm-based framework to automatically search a population of heterogeneous and complexity-adaptive agentic workflows, rather than a single homogeneous, complex workflow. Technically, EvoFlow performs \textit{(1) tag-based retrieval} to extract parent workflows from an agentic population, evolves new workflows through \textit{(2) crossover} and \textit{(3) mutation}, and employs \textit{(4) niching-based selection} to maintain population diversity and quality. Extensive evaluations across seven benchmarks demonstrate that EvoFlow is: \textbf{(I) diverse}, evolving a population of workflows ranging from simple I/O tasks to complex multi-turn interactions; \textbf{(II) high-performing}, outperforming previous handcrafted and automated workflows by $1.23\%\sim29.86\%$; \textbf{(III) economical}, surpassing powerful \llmname{o1-preview} at $12.4\%$ of its inference cost using weaker open-source models.
Abstract:Large Language Model (LLM)-empowered multi-agent systems extend the cognitive boundaries of individual agents through disciplined collaboration and interaction, while constructing these systems often requires labor-intensive manual designs. Despite the availability of methods to automate the design of agentic workflows, they typically seek to identify a static, complex, one-size-fits-all system, which, however, fails to dynamically allocate inference resources based on the difficulty and domain of each query. To address this challenge, we shift away from the pursuit of a monolithic agentic system, instead optimizing the \textbf{agentic supernet}, a probabilistic and continuous distribution of agentic architectures. We introduce MaAS, an automated framework that samples query-dependent agentic systems from the supernet, delivering high-quality solutions and tailored resource allocation (\textit{e.g.}, LLM calls, tool calls, token cost). Comprehensive evaluation across six benchmarks demonstrates that MaAS \textbf{(I)} requires only $6\sim45\%$ of the inference costs of existing handcrafted or automated multi-agent systems, \textbf{(II)} surpasses them by $0.54\%\sim11.82\%$, and \textbf{(III)} enjoys superior cross-dataset and cross-LLM-backbone transferability.