Abstract:Precise user localization and tracking enhances energy-efficient and ultra-reliable low latency applications in the next generation wireless networks. In addition to computational complexity and data association challenges with Kalman-filter localization techniques, estimation errors tend to grow as the user's trajectory speed increases. By exploiting mmWave signals for joint sensing and communication, our approach dispenses with additional sensors adopted in most techniques while retaining high resolution spatial cues. We present a hybrid mobility-aware adaptive framework that selects the Extended Kalman filter at pedestrian speed and the Unscented Kalman filter at vehicular speed. The scheme mitigates data-association problem and estimation errors through adaptive noise scaling, chi-square gating, Rauch-Tung-Striebel smoothing. Evaluations using Absolute Trajectory Error, Relative Pose Error, Normalized Estimated Error Squared and Root Mean Square Error metrics demonstrate roughly 30-60% improvement in their respective regimes indicating a clear advantage over existing approaches tailored to either indoor or static settings.

Abstract:In e-commerce, where users face a vast array of possible item choices, recommender systems are vital for helping them discover suitable items they might otherwise overlook. While many recommender systems primarily rely on a user's purchase history, recent multi-behavior recommender systems incorporate various auxiliary user behaviors, such as item clicks and cart additions, to enhance recommendations. Despite their overall performance gains, their effectiveness varies considerably between visited items (i.e., those a user has interacted with through auxiliary behaviors) and unvisited items (i.e., those with which the user has had no such interactions). Specifically, our analysis reveals that (1) existing multi-behavior recommender systems exhibit a significant gap in recommendation quality between the two item types (visited and unvisited items) and (2) achieving strong performance on both types with a single model architecture remains challenging. To tackle these issues, we propose a novel multi-behavior recommender system, MEMBER. It employs a mixture-of-experts framework, with experts designed to recommend the two item types, respectively. Each expert is trained using a self-supervised method specialized for its design goal. In our comprehensive experiments, we show the effectiveness of MEMBER across both item types, achieving up to 65.46% performance gain over the best competitor in terms of Hit Ratio@20.

Abstract:Understanding how large language models (LLMs) internally represent and process their predictions is central to detecting uncertainty and preventing hallucinations. While several studies have shown that models encode uncertainty in their hidden states, it is underexplored how this affects the way they process such hidden states. In this work, we demonstrate that the dynamics of output token probabilities across layers for certain and uncertain outputs are largely aligned, revealing that uncertainty does not seem to affect inference dynamics. Specifically, we use the Tuned Lens, a variant of the Logit Lens, to analyze the layer-wise probability trajectories of final prediction tokens across 11 datasets and 5 models. Using incorrect predictions as those with higher epistemic uncertainty, our results show aligned trajectories for certain and uncertain predictions that both observe abrupt increases in confidence at similar layers. We balance this finding by showing evidence that more competent models may learn to process uncertainty differently. Our findings challenge the feasibility of leveraging simplistic methods for detecting uncertainty at inference. More broadly, our work demonstrates how interpretability methods may be used to investigate the way uncertainty affects inference.

Abstract:While graph neural networks (GNNs) have shown remarkable performance across diverse graph-related tasks, their high-dimensional hidden representations render them black boxes. In this work, we propose Graph Lingual Network (GLN), a GNN built on large language models (LLMs), with hidden representations in the form of human-readable text. Through careful prompt design, GLN incorporates not only the message passing module of GNNs but also advanced GNN techniques, including graph attention and initial residual connection. The comprehensibility of GLN's hidden representations enables an intuitive analysis of how node representations change (1) across layers and (2) under advanced GNN techniques, shedding light on the inner workings of GNNs. Furthermore, we demonstrate that GLN achieves strong zero-shot performance on node classification and link prediction, outperforming existing LLM-based baseline methods.





Abstract:Ensuring the safety of AI systems has recently emerged as a critical priority for real-world deployment, particularly in physical AI applications. Current approaches to AI safety typically address predefined domain-specific safety conditions, limiting their ability to generalize across contexts. We propose a novel AI safety framework that ensures AI systems comply with any user-defined constraint, with any desired probability, and across various domains. In this framework, we combine an AI component (e.g., neural network) with an optimization problem to produce responses that minimize objectives while satisfying user-defined constraints with probabilities exceeding user-defined thresholds. For credibility assessment of the AI component, we propose internal test data, a supplementary set of safety-labeled data, and a conservative testing methodology that provides statistical validity of using internal test data. We also present an approximation method of a loss function and how to compute its gradient for training. We mathematically prove that probabilistic constraint satisfaction is guaranteed under specific, mild conditions and prove a scaling law between safety and the number of internal test data. We demonstrate our framework's effectiveness through experiments in diverse domains: demand prediction for production decision, safe reinforcement learning within the SafetyGym simulator, and guarding AI chatbot outputs. Through these experiments, we demonstrate that our method guarantees safety for user-specified constraints, outperforms for up to several order of magnitudes existing methods in low safety threshold regions, and scales effectively with respect to the size of internal test data.

Abstract:Traditional recommender systems primarily rely on a single type of user-item interaction, such as item purchases or ratings, to predict user preferences. However, in real-world scenarios, users engage in a variety of behaviors, such as clicking on items or adding them to carts, offering richer insights into their interests. Multi-behavior recommender systems leverage these diverse interactions to enhance recommendation quality, and research on this topic has grown rapidly in recent years. This survey provides a timely review of multi-behavior recommender systems, focusing on three key steps: (1) Data Modeling: representing multi-behaviors at the input level, (2) Encoding: transforming these inputs into vector representations (i.e., embeddings), and (3) Training: optimizing machine-learning models. We systematically categorize existing multi-behavior recommender systems based on the commonalities and differences in their approaches across the above steps. Additionally, we discuss promising future directions for advancing multi-behavior recommender systems.





Abstract:Diffusion models excel in generative tasks, but aligning them with specific objectives while maintaining their versatility remains challenging. Existing fine-tuning methods often suffer from reward over-optimization, while approximate guidance approaches fail to optimize target rewards effectively. Addressing these limitations, we propose a training-free sampling method based on Sequential Monte Carlo (SMC) to sample from the reward-aligned target distribution. Our approach, tailored for diffusion sampling and incorporating tempering techniques, achieves comparable or superior target rewards to fine-tuning methods while preserving diversity and cross-reward generalization. We demonstrate its effectiveness in single-reward optimization, multi-objective scenarios, and online black-box optimization. This work offers a robust solution for aligning diffusion models with diverse downstream objectives without compromising their general capabilities. Code is available at https://github.com/krafton-ai/DAS .





Abstract:This paper proposes a Quantum-MUSIC, the first multiple signal classification (MUSIC) algorithm for quantum wireless sensing of multi-user. Since an atomic receiver for quantum wireless sensing can only measure the magnitude of a received signal, sensing performance degradation of traditional antenna-based signal processing algorithms is inevitable. To overcome this limitation, the proposed algorithm recovers the channel information and incorporates the traditional MUSIC algorithm, enabling the sensing of multi-user with magnitude-only measurement. Simulation results showed that the proposed algorithm outperforms the existing MUSIC algorithm, validating the superior potential of quantum wireless sensing.

Abstract:Graph autoencoders (Graph-AEs) learn representations of given graphs by aiming to accurately reconstruct them. A notable application of Graph-AEs is graph-level anomaly detection (GLAD), whose objective is to identify graphs with anomalous topological structures and/or node features compared to the majority of the graph population. Graph-AEs for GLAD regard a graph with a high mean reconstruction error (i.e. mean of errors from all node pairs and/or nodes) as anomalies. Namely, the methods rest on the assumption that they would better reconstruct graphs with similar characteristics to the majority. We, however, report non-trivial counter-examples, a phenomenon we call reconstruction flip, and highlight the limitations of the existing Graph-AE-based GLAD methods. Specifically, we empirically and theoretically investigate when this assumption holds and when it fails. Through our analyses, we further argue that, while the reconstruction errors for a given graph are effective features for GLAD, leveraging the multifaceted summaries of the reconstruction errors, beyond just mean, can further strengthen the features. Thus, we propose a novel and simple GLAD method, named MUSE. The key innovation of MUSE involves taking multifaceted summaries of reconstruction errors as graph features for GLAD. This surprisingly simple method obtains SOTA performance in GLAD, performing best overall among 14 methods across 10 datasets.





Abstract:Recent advances in sensing and computer vision (CV) technologies have opened the door for the application of deep learning (DL)-based CV technologies in the realm of 6G wireless communications. For the successful application of this emerging technology, it is crucial to have a qualified vision dataset tailored for wireless applications (e.g., RGB images containing wireless devices such as laptops and cell phones). An aim of this paper is to propose a large-scale vision dataset referred to as Vision Objects for Millimeter and Terahertz Communications (VOMTC). The VOMTC dataset consists of 20,232 pairs of RGB and depth images obtained from a camera attached to the base station (BS), with each pair labeled with three representative object categories (person, cell phone, and laptop) and bounding boxes of the objects. Through experimental studies of the VOMTC datasets, we show that the beamforming technique exploiting the VOMTC-trained object detector outperforms conventional beamforming techniques.
