Alert button
Picture for Han Hu

Han Hu

Alert button

Multiple View Geometry Transformers for 3D Human Pose Estimation

Nov 18, 2023
Ziwei Liao, Jialiang Zhu, Chunyu Wang, Han Hu, Steven L. Waslander

In this work, we aim to improve the 3D reasoning ability of Transformers in multi-view 3D human pose estimation. Recent works have focused on end-to-end learning-based transformer designs, which struggle to resolve geometric information accurately, particularly during occlusion. Instead, we propose a novel hybrid model, MVGFormer, which has a series of geometric and appearance modules organized in an iterative manner. The geometry modules are learning-free and handle all viewpoint-dependent 3D tasks geometrically which notably improves the model's generalization ability. The appearance modules are learnable and are dedicated to estimating 2D poses from image signals end-to-end which enables them to achieve accurate estimates even when occlusion occurs, leading to a model that is both accurate and generalizable to new cameras and geometries. We evaluate our approach for both in-domain and out-of-domain settings, where our model consistently outperforms state-of-the-art methods, and especially does so by a significant margin in the out-of-domain setting. We will release the code and models: https://github.com/XunshanMan/MVGFormer.

* 14 pages, 8 figures 
Viaarxiv icon

Federated Learning with Manifold Regularization and Normalized Update Reaggregation

Nov 10, 2023
Xuming An, Li Shen, Han Hu, Yong Luo

Federated Learning (FL) is an emerging collaborative machine learning framework where multiple clients train the global model without sharing their own datasets. In FL, the model inconsistency caused by the local data heterogeneity across clients results in the near-orthogonality of client updates, which leads to the global update norm reduction and slows down the convergence. Most previous works focus on eliminating the difference of parameters (or gradients) between the local and global models, which may fail to reflect the model inconsistency due to the complex structure of the machine learning model and the Euclidean space's limitation in meaningful geometric representations. In this paper, we propose FedMRUR by adopting the manifold model fusion scheme and a new global optimizer to alleviate the negative impacts. Concretely, FedMRUR adopts a hyperbolic graph manifold regularizer enforcing the representations of the data in the local and global models are close to each other in a low-dimensional subspace. Because the machine learning model has the graph structure, the distance in hyperbolic space can reflect the model bias better than the Euclidean distance. In this way, FedMRUR exploits the manifold structures of the representations to significantly reduce the model inconsistency. FedMRUR also aggregates the client updates norms as the global update norm, which can appropriately enlarge each client's contribution to the global update, thereby mitigating the norm reduction introduced by the near-orthogonality of client updates. Furthermore, we theoretically prove that our algorithm can achieve a linear speedup property for non-convex setting under partial client participation.Experiments demonstrate that FedMRUR can achieve a new state-of-the-art (SOTA) accuracy with less communication.

Viaarxiv icon

One-for-All: Bridge the Gap Between Heterogeneous Architectures in Knowledge Distillation

Oct 30, 2023
Zhiwei Hao, Jianyuan Guo, Kai Han, Yehui Tang, Han Hu, Yunhe Wang, Chang Xu

Knowledge distillation~(KD) has proven to be a highly effective approach for enhancing model performance through a teacher-student training scheme. However, most existing distillation methods are designed under the assumption that the teacher and student models belong to the same model family, particularly the hint-based approaches. By using centered kernel alignment (CKA) to compare the learned features between heterogeneous teacher and student models, we observe significant feature divergence. This divergence illustrates the ineffectiveness of previous hint-based methods in cross-architecture distillation. To tackle the challenge in distilling heterogeneous models, we propose a simple yet effective one-for-all KD framework called OFA-KD, which significantly improves the distillation performance between heterogeneous architectures. Specifically, we project intermediate features into an aligned latent space such as the logits space, where architecture-specific information is discarded. Additionally, we introduce an adaptive target enhancement scheme to prevent the student from being disturbed by irrelevant information. Extensive experiments with various architectures, including CNN, Transformer, and MLP, demonstrate the superiority of our OFA-KD framework in enabling distillation between heterogeneous architectures. Specifically, when equipped with our OFA-KD, the student models achieve notable performance improvements, with a maximum gain of 8.0% on the CIFAR-100 dataset and 0.7% on the ImageNet-1K dataset. PyTorch code and checkpoints can be found at https://github.com/Hao840/OFAKD.

Viaarxiv icon

FP8-LM: Training FP8 Large Language Models

Oct 27, 2023
Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong, Ziyue Yang, Bolin Ni, Jingcheng Hu, Ruihang Li, Miaosen Zhang, Chen Li, Jia Ning, Ruizhe Wang, Zheng Zhang, Shuguang Liu, Joe Chau, Han Hu, Peng Cheng

In this paper, we explore FP8 low-bit data formats for efficient training of large language models (LLMs). Our key insight is that most variables, such as gradients and optimizer states, in LLM training can employ low-precision data formats without compromising model accuracy and requiring no changes to hyper-parameters. Specifically, we propose a new FP8 automatic mixed-precision framework for training LLMs. This framework offers three levels of FP8 utilization to streamline mixed-precision and distributed parallel training for LLMs. It gradually incorporates 8-bit gradients, optimizer states, and distributed learning in an incremental manner. Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 42% reduction in real memory usage but also ran 64% faster than the widely adopted BF16 framework (i.e., Megatron-LM), surpassing the speed of Nvidia Transformer Engine by 17%. This largely reduces the training costs for large foundation models. Furthermore, our FP8 mixed-precision training methodology is generic. It can be seamlessly applied to other tasks such as LLM instruction tuning and reinforcement learning with human feedback, offering savings in fine-tuning expenses. Our FP8 low-precision training framework is open-sourced at {https://github.com/Azure/MS-AMP}{aka.ms/MS.AMP}.

Viaarxiv icon

Rank-DETR for High Quality Object Detection

Oct 19, 2023
Yifan Pu, Weicong Liang, Yiduo Hao, Yuhui Yuan, Yukang Yang, Chao Zhang, Han Hu, Gao Huang

Figure 1 for Rank-DETR for High Quality Object Detection
Figure 2 for Rank-DETR for High Quality Object Detection
Figure 3 for Rank-DETR for High Quality Object Detection
Figure 4 for Rank-DETR for High Quality Object Detection

Modern detection transformers (DETRs) use a set of object queries to predict a list of bounding boxes, sort them by their classification confidence scores, and select the top-ranked predictions as the final detection results for the given input image. A highly performant object detector requires accurate ranking for the bounding box predictions. For DETR-based detectors, the top-ranked bounding boxes suffer from less accurate localization quality due to the misalignment between classification scores and localization accuracy, thus impeding the construction of high-quality detectors. In this work, we introduce a simple and highly performant DETR-based object detector by proposing a series of rank-oriented designs, combinedly called Rank-DETR. Our key contributions include: (i) a rank-oriented architecture design that can prompt positive predictions and suppress the negative ones to ensure lower false positive rates, as well as (ii) a rank-oriented loss function and matching cost design that prioritizes predictions of more accurate localization accuracy during ranking to boost the AP under high IoU thresholds. We apply our method to improve the recent SOTA methods (e.g., H-DETR and DINO-DETR) and report strong COCO object detection results when using different backbones such as ResNet-$50$, Swin-T, and Swin-L, demonstrating the effectiveness of our approach. Code is available at \url{https://github.com/LeapLabTHU/Rank-DETR}.

* NeurIPS 2023 
Viaarxiv icon

A Survey on Video Diffusion Models

Oct 16, 2023
Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, Yu-Gang Jiang

The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision, with the diffusion model playing a crucial role in this achievement. Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers, demonstrating exceptional performance not only in image generation and editing, but also in the realm of video-related research. However, existing surveys mainly focus on diffusion models in the context of image generation, with few up-to-date reviews on their application in the video domain. To address this gap, this paper presents a comprehensive review of video diffusion models in the AIGC era. Specifically, we begin with a concise introduction to the fundamentals and evolution of diffusion models. Subsequently, we present an overview of research on diffusion models in the video domain, categorizing the work into three key areas: video generation, video editing, and other video understanding tasks. We conduct a thorough review of the literature in these three key areas, including further categorization and practical contributions in the field. Finally, we discuss the challenges faced by research in this domain and outline potential future developmental trends. A comprehensive list of video diffusion models studied in this survey is available at https://github.com/ChenHsing/Awesome-Video-Diffusion-Models.

Viaarxiv icon

Learn From Model Beyond Fine-Tuning: A Survey

Oct 12, 2023
Hongling Zheng, Li Shen, Anke Tang, Yong Luo, Han Hu, Bo Du, Dacheng Tao

Figure 1 for Learn From Model Beyond Fine-Tuning: A Survey
Figure 2 for Learn From Model Beyond Fine-Tuning: A Survey
Figure 3 for Learn From Model Beyond Fine-Tuning: A Survey
Figure 4 for Learn From Model Beyond Fine-Tuning: A Survey

Foundation models (FM) have demonstrated remarkable performance across a wide range of tasks (especially in the fields of natural language processing and computer vision), primarily attributed to their ability to comprehend instructions and access extensive, high-quality data. This not only showcases their current effectiveness but also sets a promising trajectory towards the development of artificial general intelligence. Unfortunately, due to multiple constraints, the raw data of the model used for large model training are often inaccessible, so the use of end-to-end models for downstream tasks has become a new research trend, which we call Learn From Model (LFM) in this article. LFM focuses on the research, modification, and design of FM based on the model interface, so as to better understand the model structure and weights (in a black box environment), and to generalize the model to downstream tasks. The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing. Each category encompasses a repertoire of methods and strategies that aim to enhance the capabilities and performance of FM. This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM, in order to help readers better understand the current research status and ideas. To conclude, we summarize the survey by highlighting several critical areas for future exploration and addressing open issues that require further attention from the research community. The relevant papers we investigated in this article can be accessed at <https://github.com/ruthless-man/Awesome-Learn-from-Model>.

* 20 pages, 9 figures 
Viaarxiv icon

Pairwise GUI Dataset Construction Between Android Phones and Tablets

Oct 12, 2023
Han Hu, Haolan Zhan, Yujin Huang, Di Liu

Figure 1 for Pairwise GUI Dataset Construction Between Android Phones and Tablets
Figure 2 for Pairwise GUI Dataset Construction Between Android Phones and Tablets
Figure 3 for Pairwise GUI Dataset Construction Between Android Phones and Tablets
Figure 4 for Pairwise GUI Dataset Construction Between Android Phones and Tablets

In the current landscape of pervasive smartphones and tablets, apps frequently exist across both platforms. Although apps share most graphic user interfaces (GUIs) and functionalities across phones and tablets, developers often rebuild from scratch for tablet versions, escalating costs and squandering existing design resources. Researchers are attempting to collect data and employ deep learning in automated GUIs development to enhance developers' productivity. There are currently several publicly accessible GUI page datasets for phones, but none for pairwise GUIs between phones and tablets. This poses a significant barrier to the employment of deep learning in automated GUI development. In this paper, we introduce the Papt dataset, a pioneering pairwise GUI dataset tailored for Android phones and tablets, encompassing 10,035 phone-tablet GUI page pairs sourced from 5,593 unique app pairs. We propose novel pairwise GUI collection approaches for constructing this dataset and delineate its advantages over currently prevailing datasets in the field. Through preliminary experiments on this dataset, we analyze the present challenges of utilizing deep learning in automated GUI development.

* 13 pages, 7 figures. arXiv admin note: substantial text overlap with arXiv:2307.13225 
Viaarxiv icon

Parameter Efficient Multi-task Model Fusion with Partial Linearization

Oct 10, 2023
Anke Tang, Li Shen, Yong Luo, Yibing Zhan, Han Hu, Bo Du, Yixin Chen, Dacheng Tao

Figure 1 for Parameter Efficient Multi-task Model Fusion with Partial Linearization
Figure 2 for Parameter Efficient Multi-task Model Fusion with Partial Linearization
Figure 3 for Parameter Efficient Multi-task Model Fusion with Partial Linearization
Figure 4 for Parameter Efficient Multi-task Model Fusion with Partial Linearization

Large pre-trained models have enabled significant advances in machine learning and served as foundation components. Model fusion methods, such as task arithmetic, have been proven to be powerful and scalable to incorporate fine-tuned weights from different tasks into a multi-task model. However, efficiently fine-tuning large pre-trained models on multiple downstream tasks remains challenging, leading to inefficient multi-task model fusion. In this work, we propose a novel method to improve multi-task fusion for parameter-efficient fine-tuning techniques like LoRA fine-tuning. Specifically, our approach partially linearizes only the adapter modules and applies task arithmetic over the linearized adapters. This allows us to leverage the the advantages of model fusion over linearized fine-tuning, while still performing fine-tuning and inference efficiently. We demonstrate that our partial linearization technique enables a more effective fusion of multiple tasks into a single model, outperforming standard adapter tuning and task arithmetic alone. Experimental results demonstrate the capabilities of our proposed partial linearization technique to effectively construct unified multi-task models via the fusion of fine-tuned task vectors. We evaluate performance over an increasing number of tasks and find that our approach outperforms standard parameter-efficient fine-tuning techniques. The results highlight the benefits of partial linearization for scalable and efficient multi-task model fusion.

Viaarxiv icon