ML models are susceptible to risks to security, privacy, and fairness. Several defenses are designed to protect against their intended risks, but can inadvertently affect susceptibility to other unrelated risks, known as unintended interactions. Several jurisdictions are preparing ML regulatory frameworks that require ML practitioners to assess the susceptibility of ML models to different risks. A library for valuating unintended interactions that can be used by (a) practitioners to evaluate unintended interactions at scale prior to model deployment and (b) researchers to design defenses which do not suffer from an unintended increase in unrelated risks. Ideally, such a library should be i) comprehensive by including representative attacks, defenses and metrics for different risks, ii) extensible to new modules due to its modular design, iii) consistent with a user-friendly API template for inputs and outputs, iv) applicable to evaluate previously unexplored unintended interactions. We present AMULET, a Python library that covers risks to security, privacy, and fairness, which satisfies all these requirements. AMULET can be used to evaluate unexplored unintended interactions, compare effectiveness between defenses or attacks, and include new attacks and defenses.