University of Toronto, Vector Institute
Abstract:To induce desired behaviors in large language models (LLMs) for interaction-driven tasks, the instruction-tuning stage typically trains LLMs on instruction-response pairs using the next-token prediction (NTP) loss. Previous work aiming to improve instruction-tuning performance often emphasizes the need for higher-quality supervised fine-tuning (SFT) datasets, which typically involves expensive data filtering with proprietary LLMs or labor-intensive data generation by human annotators. However, these approaches do not fully leverage the datasets' intrinsic properties, resulting in high computational and labor costs, thereby limiting scalability and performance gains. In this paper, we propose SFTMix, a novel recipe that elevates instruction-tuning performance beyond the conventional NTP paradigm, without the need for well-curated datasets. Observing that LLMs exhibit uneven confidence across the semantic representation space, we argue that examples with different confidence levels should play distinct roles during the instruction-tuning process. Based on this insight, SFTMix leverages training dynamics to identify examples with varying confidence levels, then applies a Mixup-based regularization to mitigate overfitting on confident examples while propagating supervision signals to improve learning on relatively unconfident ones. This approach enables SFTMix to significantly outperform NTP across a wide range of instruction-following and healthcare domain-specific SFT tasks, demonstrating its adaptability to diverse LLM families and scalability to datasets of any size. Comprehensive ablation studies further verify the robustness of SFTMix's design choices, underscoring its versatility in consistently enhancing performance across different LLMs and datasets in broader natural language processing applications.
Abstract:For medical imaging AI models to be clinically impactful, they must generalize. However, this goal is hindered by (i) diverse types of distribution shifts, such as temporal, demographic, and label shifts, and (ii) limited diversity in datasets that are siloed within single medical institutions. While these limitations have spurred interest in federated learning, current evaluation benchmarks fail to evaluate different shifts simultaneously. However, in real healthcare settings, multiple types of shifts co-exist, yet their impact on medical imaging performance remains unstudied. In response, we introduce FedMedICL, a unified framework and benchmark to holistically evaluate federated medical imaging challenges, simultaneously capturing label, demographic, and temporal distribution shifts. We comprehensively evaluate several popular methods on six diverse medical imaging datasets (totaling 550 GPU hours). Furthermore, we use FedMedICL to simulate COVID-19 propagation across hospitals and evaluate whether methods can adapt to pandemic changes in disease prevalence. We find that a simple batch balancing technique surpasses advanced methods in average performance across FedMedICL experiments. This finding questions the applicability of results from previous, narrow benchmarks in real-world medical settings.
Abstract:Machine learning models can fail on subgroups that are underrepresented during training. While techniques such as dataset balancing can improve performance on underperforming groups, they require access to training group annotations and can end up removing large portions of the dataset. In this paper, we introduce Data Debiasing with Datamodels (D3M), a debiasing approach which isolates and removes specific training examples that drive the model's failures on minority groups. Our approach enables us to efficiently train debiased classifiers while removing only a small number of examples, and does not require training group annotations or additional hyperparameter tuning.
Abstract:Estimating the uncertainty of a model's prediction on a test point is a crucial part of ensuring reliability and calibration under distribution shifts. A minimum description length approach to this problem uses the predictive normalized maximum likelihood (pNML) distribution, which considers every possible label for a data point, and decreases confidence in a prediction if other labels are also consistent with the model and training data. In this work we propose IF-COMP, a scalable and efficient approximation of the pNML distribution that linearizes the model with a temperature-scaled Boltzmann influence function. IF-COMP can be used to produce well-calibrated predictions on test points as well as measure complexity in both labelled and unlabelled settings. We experimentally validate IF-COMP on uncertainty calibration, mislabel detection, and OOD detection tasks, where it consistently matches or beats strong baseline methods.
Abstract:Large language models (LLMs) are already being piloted for clinical use in hospital systems like NYU Langone, Dana-Farber and the NHS. A proposed deployment use case is psychotherapy, where a LLM-powered chatbot can treat a patient undergoing a mental health crisis. Deployment of LLMs for mental health response could hypothetically broaden access to psychotherapy and provide new possibilities for personalizing care. However, recent high-profile failures, like damaging dieting advice offered by the Tessa chatbot to patients with eating disorders, have led to doubt about their reliability in high-stakes and safety-critical settings. In this work, we develop an evaluation framework for determining whether LLM response is a viable and ethical path forward for the automation of mental health treatment. Using human evaluation with trained clinicians and automatic quality-of-care metrics grounded in psychology research, we compare the responses provided by peer-to-peer responders to those provided by a state-of-the-art LLM. We show that LLMs like GPT-4 use implicit and explicit cues to infer patient demographics like race. We then show that there are statistically significant discrepancies between patient subgroups: Responses to Black posters consistently have lower empathy than for any other demographic group (2%-13% lower than the control group). Promisingly, we do find that the manner in which responses are generated significantly impacts the quality of the response. We conclude by proposing safety guidelines for the potential deployment of LLMs for mental health response.
Abstract:As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly important. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.
Abstract:The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the \ac{ML4H} community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field.
Abstract:Despite a rich history of investigating smartphone overuse intervention techniques, AI-based just-in-time adaptive intervention (JITAI) methods for overuse reduction are lacking. We develop Time2Stop, an intelligent, adaptive, and explainable JITAI system that leverages machine learning to identify optimal intervention timings, introduces interventions with transparent AI explanations, and collects user feedback to establish a human-AI loop and adapt the intervention model over time. We conducted an 8-week field experiment (N=71) to evaluate the effectiveness of both the adaptation and explanation aspects of Time2Stop. Our results indicate that our adaptive models significantly outperform the baseline methods on intervention accuracy (>32.8\% relatively) and receptivity (>8.0\%). In addition, incorporating explanations further enhances the effectiveness by 53.8\% and 11.4\% on accuracy and receptivity, respectively. Moreover, Time2Stop significantly reduces overuse, decreasing app visit frequency by 7.0$\sim$8.9\%. Our subjective data also echoed these quantitative measures. Participants preferred the adaptive interventions and rated the system highly on intervention time accuracy, effectiveness, and level of trust. We envision our work can inspire future research on JITAI systems with a human-AI loop to evolve with users.
Abstract:Parameter-efficient fine-tuning optimizes large, pre-trained foundation models by updating a subset of parameters; in this class, Low-Rank Adaptation (LoRA) is particularly effective. Inspired by an effort to investigate the different roles of LoRA matrices during fine-tuning, this paper characterizes and leverages unexpected asymmetry in the importance of low-rank adapter matrices. Specifically, when updating the parameter matrices of a neural network by adding a product $BA$, we observe that the $B$ and $A$ matrices have distinct functions: $A$ extracts features from the input, while $B$ uses these features to create the desired output. Based on this observation, we demonstrate that fine-tuning $B$ is inherently more effective than fine-tuning $A$, and that a random untrained $A$ should perform nearly as well as a fine-tuned one. Using an information-theoretic lens, we also bound the generalization of low-rank adapters, showing that the parameter savings of exclusively training $B$ improves the bound. We support our conclusions with experiments on RoBERTa, BART-Large, LLaMA-2, and ViTs.
Abstract:Machine learning models often excel on in-distribution (ID) data but struggle with unseen out-of-distribution (OOD) inputs. Most techniques for improving OOD robustness are not applicable to settings where the model is effectively a black box, such as when the weights are frozen, retraining is costly, or the model is leveraged via an API. Test-time augmentation (TTA) is a simple post-hoc technique for improving robustness that sidesteps black-box constraints by aggregating predictions across multiple augmentations of the test input. TTA has seen limited use in NLP due to the challenge of generating effective natural language augmentations. In this work, we propose LLM-TTA, which uses LLM-generated augmentations as TTA's augmentation function. LLM-TTA outperforms conventional augmentation functions across sentiment, toxicity, and news classification tasks for BERT and T5 models, with BERT's OOD robustness improving by an average of 4.30 percentage points without regressing average ID performance. We explore selectively augmenting inputs based on prediction entropy to reduce the rate of expensive LLM augmentations, allowing us to maintain performance gains while reducing the average number of generated augmentations by 57.76%. LLM-TTA is agnostic to the task model architecture, does not require OOD labels, and is effective across low and high-resource settings. We share our data, models, and code for reproducibility.