Abstract:While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
Abstract:Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
Abstract:Ranking is central to information distribution in web search and recommendation. Nowadays, in ranking optimization, the fairness to item providers is viewed as a crucial factor alongside ranking relevance for users. There are currently numerous concepts of fairness and one widely recognized fairness concept is Exposure Fairness. However, it relies primarily on exposure determined solely by position, overlooking other factors that significantly influence income, such as time. To address this limitation, we propose to study ranking fairness when the provider utility is influenced by other contextual factors and is neither equal to nor proportional to item exposure. We give a formal definition of Income Fairness and develop a corresponding measurement metric. Simulated experiments show that existing-exposure-fairness-based ranking algorithms fail to optimize the proposed income fairness. Therefore, we propose the Dynamic-Income-Derivative-aware Ranking Fairness algorithm, which, based on the marginal income gain at the present timestep, uses Taylor-expansion-based gradients to simultaneously optimize effectiveness and income fairness. In both offline and online settings with diverse time-income functions, DIDRF consistently outperforms state-of-the-art methods.
Abstract:Ranking plays a central role in connecting users and providers in Information Retrieval (IR) systems, making provider-side fairness an important challenge. While recent research has begun to address fairness in ranking, most existing approaches adopt an equality-based perspective, aiming to ensure that providers with similar content receive similar exposure. However, it overlooks the diverse needs of real-world providers, whose utility from ranking may depend not only on exposure but also on outcomes like sales or engagement. Consequently, exposure-based fairness may not accurately capture the true utility perceived by different providers with varying priorities. To this end, we introduce an equity-oriented fairness framework that explicitly models each provider's preferences over key outcomes such as exposure and sales, thus evaluating whether a ranking algorithm can fulfill these individualized goals while maintaining overall fairness across providers. Based on this framework, we develop EquityRank, a gradient-based algorithm that jointly optimizes user-side effectiveness and provider-side equity. Extensive offline and online simulations demonstrate that EquityRank offers improved trade-offs between effectiveness and fairness and adapts to heterogeneous provider needs.
Abstract:Large language models (LLMs) are largely static and often redo reasoning or repeat mistakes. Prior experience reuse typically relies on external retrieval, which is similarity-based, can introduce noise, and adds latency. We introduce SEAM (Structured Experience Adapter Module), a lightweight, executor-specific plug-in that stores experience in its parameters and generates a structured, instance-tailored experience entry in a single forward pass to guide a frozen LLM executor. SEAM is trained for utility via executor rollouts and GRPO while keeping the executor frozen, and it can be further improved after deployment with supervised fine-tuning on logged successful trajectories. Experiments on mathematical reasoning benchmarks show consistent accuracy gains across executors with low overhead. Extensive ablations and analyses further elucidate the mechanisms underlying SEAM's effectiveness and robustness.
Abstract:Large language models (LLMs) are being increasingly integrated into legal applications, including judicial decision support, legal practice assistance, and public-facing legal services. While LLMs show strong potential in handling legal knowledge and tasks, their deployment in real-world legal settings raises critical concerns beyond surface-level accuracy, involving the soundness of legal reasoning processes and trustworthy issues such as fairness and reliability. Systematic evaluation of LLM performance in legal tasks has therefore become essential for their responsible adoption. This survey identifies key challenges in evaluating LLMs for legal tasks grounded in real-world legal practice. We analyze the major difficulties involved in assessing LLM performance in the legal domain, including outcome correctness, reasoning reliability, and trustworthiness. Building on these challenges, we review and categorize existing evaluation methods and benchmarks according to their task design, datasets, and evaluation metrics. We further discuss the extent to which current approaches address these challenges, highlight their limitations, and outline future research directions toward more realistic, reliable, and legally grounded evaluation frameworks for LLMs in legal domains.
Abstract:Scaling laws aim to accurately predict model performance across different scales. Existing scaling-law studies almost exclusively rely on cross-entropy as the evaluation metric. However, cross-entropy provides only a partial view of performance: it measures the absolute probability assigned to the correct token, but ignores the relative ordering between correct and incorrect tokens. Yet, relative ordering is crucial for language models, such as in greedy-sampling scenario. To address this limitation, we investigate scaling from the perspective of relative ordering. We first propose the Relative-Based Probability (RBP) metric, which quantifies the probability that the correct token is ranked among the top predictions. Building on this metric, we establish the Relative-Based Scaling Law, which characterizes how RBP improves with increasing model size. Through extensive experiments on four datasets and four model families spanning five orders of magnitude, we demonstrate the robustness and accuracy of this law. Finally, we illustrate the broad application of this law with two examples, namely providing a deeper explanation of emergence phenomena and facilitating finding fundamental theories of scaling laws. In summary, the Relative-Based Scaling Law complements the cross-entropy perspective and contributes to a more complete understanding of scaling large language models. Thus, it offers valuable insights for both practical development and theoretical exploration.




Abstract:Mock trial has long served as an important platform for legal professional training and education. It not only helps students learn about realistic trial procedures, but also provides practical value for case analysis and judgment prediction. Traditional mock trials are difficult to access by the public because they rely on professional tutors and human participants. Fortunately, the rise of large language models (LLMs) provides new opportunities for creating more accessible and scalable court simulations. While promising, existing research mainly focuses on agent construction while ignoring the systematic design and evaluation of court simulations, which are actually more important for the credibility and usage of court simulation in practice. To this end, we present the first court simulation framework -- SimCourt -- based on the real-world procedure structure of Chinese courts. Our framework replicates all 5 core stages of a Chinese trial and incorporates 5 courtroom roles, faithfully following the procedural definitions in China. To simulate trial participants with different roles, we propose and craft legal agents equipped with memory, planning, and reflection abilities. Experiment on legal judgment prediction show that our framework can generate simulated trials that better guide the system to predict the imprisonment, probation, and fine of each case. Further annotations by human experts show that agents' responses under our simulation framework even outperformed judges and lawyers from the real trials in many scenarios. These further demonstrate the potential of LLM-based court simulation.
Abstract:Multi-agent techniques such as role playing or multi-turn debates have been shown to be effective in improving the performance of large language models (LLMs) in downstream tasks. Despite their differences in workflows, existing LLM-based multi-agent systems mostly use natural language for agent communication. While this is appealing for its simplicity and interpretability, it also introduces inevitable information loss as one model must down sample its continuous state vectors to concrete tokens before transferring them to the other model. Such losses are particularly significant when the information to transfer is not simple facts, but reasoning logics or abstractive thoughts. To tackle this problem, we propose a new communication protocol that transfers both natural language tokens and token-wise state transition trajectory from one agent to another. Particularly, compared to the actual state value, we find that the sequence of state changes in LLMs after generating each token can better reflect the information hidden behind the inference process, so we propose a State Delta Encoding (SDE) method to represent state transition trajectories. The experimental results show that multi-agent systems with SDE achieve SOTA performance compared to other communication protocols, particularly in tasks that involve complex reasoning. This shows the potential of communication augmentation for LLM-based multi-agent systems.
Abstract:Retrieval-Augmented Generation (RAG) has become a foundational paradigm for equipping large language models (LLMs) with external knowledge, playing a critical role in information retrieval and knowledge-intensive applications. However, conventional RAG systems typically adopt a static retrieve-then-generate pipeline and rely on in-context knowledge injection, which can be suboptimal for complex tasks that require multihop reasoning, adaptive information access, and deeper integration of external knowledge. Motivated by these limitations, the research community has moved beyond static retrieval and in-context knowledge injection. Among the emerging directions, this tutorial delves into two rapidly growing and complementary research areas on RAG: Dynamic RAG and Parametric RAG. Dynamic RAG adaptively determines when and what to retrieve during the LLM's generation process, enabling real-time adaptation to the LLM's evolving information needs. Parametric RAG rethinks how retrieved knowledge should be injected into LLMs, transitioning from input-level to parameter-level knowledge injection for enhanced efficiency and effectiveness. This tutorial offers a comprehensive overview of recent advances in these emerging research areas. It also shares theoretical foundations and practical insights to support and inspire further research in RAG.