Abstract:Recent advancements in Large Reasoning Models (LRMs), exemplified by DeepSeek-R1, have underscored the potential of scaling inference-time compute through Group Relative Policy Optimization (GRPO). However, GRPO frequently suffers from gradient signal attenuation when encountering problems that are either too trivial or overly complex. In these scenarios, the disappearance of inter-group advantages makes the gradient signal susceptible to noise, thereby jeopardizing convergence stability. While variants like DAPO attempt to rectify gradient vanishing, they do not alleviate the substantial computational overhead incurred by exhaustive rollouts on low-utility samples. In this paper, we propose Difficulty-Estimated Policy Optimization (DEPO), a novel framework designed to optimize the efficiency and robustness of reasoning alignment. DEPO integrates an online Difficulty Estimator that dynamically assesses and filters training data before the rollout phase. This mechanism ensures that computational resources are prioritized for samples with high learning potential. Empirical results demonstrate that DEPO achieves up to a 2x reduction in rollout costs without compromising model performance. Our approach significantly lowers the computational barrier for training high-performance reasoning models, offering a more sustainable path for reasoning scaling. Code and data will be released upon acceptance.
Abstract:Current Information Seeking (InfoSeeking) agents struggle to maintain focus and coherence during long-horizon exploration, as tracking search states, including planning procedure and massive search results, within one plain-text context is inherently fragile. To address this, we introduce \textbf{Table-as-Search (TaS)}, a structured planning framework that reformulates the InfoSeeking task as a Table Completion task. TaS maps each query into a structured table schema maintained in an external database, where rows represent search candidates and columns denote constraints or required information. This table precisely manages the search states: filled cells strictly record the history and search results, while empty cells serve as an explicit search plan. Crucially, TaS unifies three distinct InfoSeeking tasks: Deep Search, Wide Search, and the challenging DeepWide Search. Extensive experiments demonstrate that TaS significantly outperforms numerous state-of-the-art baselines across three kinds of benchmarks, including multi-agent framework and commercial systems. Furthermore, our analysis validates the TaS's superior robustness in long-horizon InfoSeeking, alongside its efficiency, scalability and flexibility. Code and datasets are publicly released at https://github.com/AIDC-AI/Marco-Search-Agent.
Abstract:While Long Chain-of-Thought (CoT) reasoning significantly improves Large Language Models (LLMs) performance on complex reasoning tasks, the substantial computational and memory costs of generating long CoT sequences limit their efficiency and practicality. Existing studies usually enhance the reasoning efficiency of LLMs by compressing CoT sequences. However, this approach conflicts with test-time scaling, limiting the reasoning capacity of LLMs. In this paper, we propose an efficient reasoning framework that models the reasoning process of LLMs as a state-transition process. Specifically, we first apply a linear attention mechanism to estimate the LLM's reasoning state, which records the historical reasoning information from previous reasoning steps. Then, based on the query prompt and the reasoning state, the LLM can efficiently perform the current reasoning step and update the state. With the linear attention, each token in the current reasoning step can directly retrieve relevant historical reasoning information from the reasoning state, without explicitly attending to tokens in previous reasoning steps. In this way, the computational complexity of attention is reduced from quadratic to linear, significantly improving the reasoning efficiency of LLMs. In addition, we propose a state-based reasoning strategy to mitigate the over-thinking issue caused by noisy reasoning steps. Extensive experiments across multiple datasets and model sizes demonstrate that our framework not only improves the reasoning efficiency of LLMs but also enhances their reasoning performance.
Abstract:In-Image Machine Translation (IIMT) powers cross-border e-commerce product listings; existing research focuses on machine translation evaluation, while visual rendering quality is critical for user engagement. When facing context-dense product imagery and multimodal defects, current reference-based methods (e.g., SSIM, FID) lack explainability, while model-as-judge approaches lack domain-grounded, fine-grained reward signals. To bridge this gap, we introduce Vectra, to the best of our knowledge, the first reference-free, MLLM-driven visual quality assessment framework for e-commerce IIMT. Vectra comprises three components: (1) Vectra Score, a multidimensional quality metric system that decomposes visual quality into 14 interpretable dimensions, with spatially-aware Defect Area Ratio (DAR) quantification to reduce annotation ambiguity; (2) Vectra Dataset, constructed from 1.1M real-world product images via diversity-aware sampling, comprising a 2K benchmark for system evaluation, 30K reasoning-based annotations for instruction tuning, and 3.5K expert-labeled preferences for alignment and evaluation; and (3) Vectra Model, a 4B-parameter MLLM that generates both quantitative scores and diagnostic reasoning. Experiments demonstrate that Vectra achieves state-of-the-art correlation with human rankings, and our model outperforms leading MLLMs, including GPT-5 and Gemini-3, in scoring performance. The dataset and model will be released upon acceptance.
Abstract:Large Language Models (LLMs) frequently exhibit strong translation abilities, even without task-specific fine-tuning. However, the internal mechanisms governing this innate capability remain largely opaque. To demystify this process, we leverage Sparse Autoencoders (SAEs) and introduce a novel framework for identifying task-specific features. Our method first recalls features that are frequently co-activated on translation inputs and then filters them for functional coherence using a PCA-based consistency metric. This framework successfully isolates a small set of **translation initiation** features. Causal interventions demonstrate that amplifying these features steers the model towards correct translation, while ablating them induces hallucinations and off-task outputs, confirming they represent a core component of the model's innate translation competency. Moving from analysis to application, we leverage this mechanistic insight to propose a new data selection strategy for efficient fine-tuning. Specifically, we prioritize training on **mechanistically hard** samples-those that fail to naturally activate the translation initiation features. Experiments show this approach significantly improves data efficiency and suppresses hallucinations. Furthermore, we find these mechanisms are transferable to larger models of the same family. Our work not only decodes a core component of the translation mechanism in LLMs but also provides a blueprint for using internal model mechanism to create more robust and efficient models. The codes are available at https://github.com/flamewei123/AAAI26-translation-Initiation-Features.
Abstract:Current approaches to memory in Large Language Models (LLMs) predominantly rely on static Retrieval-Augmented Generation (RAG), which often results in scattered retrieval and fails to capture the structural dependencies required for complex reasoning. For autonomous agents, these passive and flat architectures lack the cognitive organization necessary to model the dynamic and associative nature of long-term interaction. To address this, we propose Structured Episodic Event Memory (SEEM), a hierarchical framework that synergizes a graph memory layer for relational facts with a dynamic episodic memory layer for narrative progression. Grounded in cognitive frame theory, SEEM transforms interaction streams into structured Episodic Event Frames (EEFs) anchored by precise provenance pointers. Furthermore, we introduce an agentic associative fusion and Reverse Provenance Expansion (RPE) mechanism to reconstruct coherent narrative contexts from fragmented evidence. Experimental results on the LoCoMo and LongMemEval benchmarks demonstrate that SEEM significantly outperforms baselines, enabling agents to maintain superior narrative coherence and logical consistency.
Abstract:Precisely controlling the length of generated text is a common requirement in real-world applications. However, despite significant advancements in following human instructions, Large Language Models (LLMs) still struggle with this task. In this work, we demonstrate that LLMs often fail to accurately measure their response lengths, leading to poor adherence to length constraints. To address this issue, we propose a novel length regulation approach that incorporates dynamic length feedback during generation, enabling adaptive adjustments to meet target lengths. Experiments on summarization and biography tasks show our training-free approach significantly improves precision in achieving target token, word, or sentence counts without compromising quality. Additionally, we demonstrate that further supervised fine-tuning allows our method to generalize effectively to broader text-generation tasks.
Abstract:Instruction-following capability has become a major ability to be evaluated for Large Language Models (LLMs). However, existing datasets, such as IFEval, are either predominantly monolingual and centered on English or simply machine translated to other languages, limiting their applicability in multilingual contexts. In this paper, we present an carefully-curated extension of IFEval to a localized multilingual version named Marco-Bench-MIF, covering 30 languages with varying levels of localization. Our benchmark addresses linguistic constraints (e.g., modifying capitalization requirements for Chinese) and cultural references (e.g., substituting region-specific company names in prompts) via a hybrid pipeline combining translation with verification. Through comprehensive evaluation of 20+ LLMs on our Marco-Bench-MIF, we found that: (1) 25-35% accuracy gap between high/low-resource languages, (2) model scales largely impact performance by 45-60% yet persists script-specific challenges, and (3) machine-translated data underestimates accuracy by7-22% versus localized data. Our analysis identifies challenges in multilingual instruction following, including keyword consistency preservation and compositional constraint adherence across languages. Our Marco-Bench-MIF is available at https://github.com/AIDC-AI/Marco-Bench-MIF.
Abstract:Vision-Language Translation (VLT) is a challenging task that requires accurately recognizing multilingual text embedded in images and translating it into the target language with the support of visual context. While recent Large Vision-Language Models (LVLMs) have demonstrated strong multilingual and visual understanding capabilities, there is a lack of systematic evaluation and understanding of their performance on VLT. In this work, we present a comprehensive study of VLT from three key perspectives: data quality, model architecture, and evaluation metrics. (1) We identify critical limitations in existing datasets, particularly in semantic and cultural fidelity, and introduce AibTrans -- a multilingual, parallel, human-verified dataset with OCR-corrected annotations. (2) We benchmark 11 commercial LVLMs/LLMs and 6 state-of-the-art open-source models across end-to-end and cascaded architectures, revealing their OCR dependency and contrasting generation versus reasoning behaviors. (3) We propose Density-Aware Evaluation to address metric reliability issues under varying contextual complexity, introducing the DA Score as a more robust measure of translation quality. Building upon these findings, we establish a new evaluation benchmark for VLT. Notably, we observe that fine-tuning LVLMs on high-resource language pairs degrades cross-lingual performance, and we propose a balanced multilingual fine-tuning strategy that effectively adapts LVLMs to VLT without sacrificing their generalization ability.
Abstract:Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.