Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics

Jul 25, 2020
Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, Matei Zaharia


  Access Paper or Ask Questions

Relevance-guided Supervision for OpenQA with ColBERT

Jul 01, 2020
Omar Khattab, Christopher Potts, Matei Zaharia


  Access Paper or Ask Questions

Similarity Search for Efficient Active Learning and Search of Rare Concepts

Jun 30, 2020
Cody Coleman, Edward Chou, Sean Culatana, Peter Bailis, Alexander C. Berg, Roshan Sumbaly, Matei Zaharia, I. Zeki Yalniz


  Access Paper or Ask Questions

Sparse GPU Kernels for Deep Learning

Jun 18, 2020
Trevor Gale, Matei Zaharia, Cliff Young, Erich Elsen


  Access Paper or Ask Questions

Memory-Efficient Pipeline-Parallel DNN Training

Jun 16, 2020
Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, Matei Zaharia


  Access Paper or Ask Questions

FrugalML: How to Use ML Prediction APIs More Accurately and Cheaply

Jun 12, 2020
Lingjiao Chen, Matei Zaharia, James Zou


  Access Paper or Ask Questions

ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT

Jun 04, 2020
Omar Khattab, Matei Zaharia

* Accepted at SIGIR 2020 

  Access Paper or Ask Questions

Model Assertions for Monitoring and Improving ML Models

Mar 11, 2020
Daniel Kang, Deepti Raghavan, Peter Bailis, Matei Zaharia

* MLSys 2020 

  Access Paper or Ask Questions

MLPerf Training Benchmark

Oct 30, 2019
Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff Young, Matei Zaharia


  Access Paper or Ask Questions

Selection Via Proxy: Efficient Data Selection For Deep Learning

Jun 26, 2019
Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, Matei Zaharia


  Access Paper or Ask Questions

Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference

Jun 03, 2019
Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, Matei Zaharia


  Access Paper or Ask Questions

SysML: The New Frontier of Machine Learning Systems

May 01, 2019
Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar


  Access Paper or Ask Questions

LIT: Block-wise Intermediate Representation Training for Model Compression

Oct 02, 2018
Animesh Koratana, Daniel Kang, Peter Bailis, Matei Zaharia


  Access Paper or Ask Questions

Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark

Jun 04, 2018
Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Re, Matei Zaharia


  Access Paper or Ask Questions

NoScope: Optimizing Neural Network Queries over Video at Scale

Aug 08, 2017
Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, Matei Zaharia

* PVLDB 2017 

  Access Paper or Ask Questions

Infrastructure for Usable Machine Learning: The Stanford DAWN Project

Jun 09, 2017
Peter Bailis, Kunle Olukotun, Christopher Re, Matei Zaharia


  Access Paper or Ask Questions

MLlib: Machine Learning in Apache Spark

May 26, 2015
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar


  Access Paper or Ask Questions

Large Scale Estimation in Cyberphysical Systems using Streaming Data: a Case Study with Smartphone Traces

Dec 14, 2012
Timothy Hunter, Tathagata Das, Matei Zaharia, Pieter Abbeel, Alexandre M. Bayen


  Access Paper or Ask Questions