Abstract:Large Language Models (LLMs) are increasingly deployed in both academic and industry settings to automate the evaluation of information seeking systems, particularly by generating graded relevance judgments. Previous work on LLM-based relevance assessment has primarily focused on replicating graded human relevance judgments through various prompting strategies. However, there has been limited exploration of alternative assessment methods or comprehensive comparative studies. In this paper, we systematically compare multiple LLM-based relevance assessment methods, including binary relevance judgments, graded relevance assessments, pairwise preference-based methods, and two nugget-based evaluation methods~--~document-agnostic and document-dependent. In addition to a traditional comparison based on system rankings using Kendall correlations, we also examine how well LLM judgments align with human preferences, as inferred from relevance grades. We conduct extensive experiments on datasets from three TREC Deep Learning tracks 2019, 2020 and 2021 as well as the ANTIQUE dataset, which focuses on non-factoid open-domain question answering. As part of our data release, we include relevance judgments generated by both an open-source (Llama3.2b) and a commercial (gpt-4o) model. Our goal is to \textit{reproduce} various LLM-based relevance judgment methods to provide a comprehensive comparison. All code, data, and resources are publicly available in our GitHub Repository at https://github.com/Narabzad/llm-relevance-judgement-comparison.
Abstract:Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks, often demonstrating agreement with human labels that approaches inter-human agreement. To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task. We collected prompts for relevance assessment from 15 human experts and 15 LLMs across three tasks~ -- ~binary, graded, and pairwise~ -- ~yielding 90 prompts in total. After filtering out unusable prompts from three humans and three LLMs, we employed the remaining 72 prompts with three different LLMs as judges to label document/query pairs from two TREC Deep Learning Datasets (2020 and 2021). We compare LLM-generated labels with TREC official human labels using Cohen's $\kappa$ and pairwise agreement measures. In addition to investigating the impact of prompt variations on agreement with human labels, we compare human- and LLM-generated prompts and analyze differences among different LLMs as judges. We also compare human- and LLM-generated prompts with the standard UMBRELA prompt used for relevance assessment by Bing and TREC 2024 Retrieval Augmented Generation (RAG) Track. To support future research in LLM-based evaluation, we release all data and prompts at https://github.com/Narabzad/prompt-sensitivity-relevance-judgements/.
Abstract:The peer review process is crucial for ensuring the quality and reliability of scholarly work, yet assigning suitable reviewers remains a significant challenge. Traditional manual methods are labor-intensive and often ineffective, leading to nonconstructive or biased reviews. This paper introduces the exHarmony (eHarmony but for connecting experts to manuscripts) benchmark, designed to address these challenges by re-imagining the Reviewer Assignment Problem (RAP) as a retrieval task. Utilizing the extensive data from OpenAlex, we propose a novel approach that considers a host of signals from the authors, most similar experts, and the citation relations as potential indicators for a suitable reviewer for a manuscript. This approach allows us to develop a standard benchmark dataset for evaluating the reviewer assignment problem without needing explicit labels. We benchmark various methods, including traditional lexical matching, static neural embeddings, and contextualized neural embeddings, and introduce evaluation metrics that assess both relevance and diversity in the context of RAP. Our results indicate that while traditional methods perform reasonably well, contextualized embeddings trained on scholarly literature show the best performance. The findings underscore the importance of further research to enhance the diversity and effectiveness of reviewer assignments.
Abstract:Large language Models (LLMs) are highly sensitive to variations in prompt formulation, which can significantly impact their ability to generate accurate responses. In this paper, we introduce a new task, Prompt Sensitivity Prediction, and a dataset PromptSET designed to investigate the effects of slight prompt variations on LLM performance. Using TriviaQA and HotpotQA datasets as the foundation of our work, we generate prompt variations and evaluate their effectiveness across multiple LLMs. We benchmark the prompt sensitivity prediction task employing state-of-the-art methods from related tasks, including LLM-based self-evaluation, text classification, and query performance prediction techniques. Our findings reveal that existing methods struggle to effectively address prompt sensitivity prediction, underscoring the need to understand how information needs should be phrased for accurate LLM responses.
Abstract:Recent research has shown that neural information retrieval techniques may be susceptible to adversarial attacks. Adversarial attacks seek to manipulate the ranking of documents, with the intention of exposing users to targeted content. In this paper, we introduce the Embedding Perturbation Rank Attack (EMPRA) method, a novel approach designed to perform adversarial attacks on black-box Neural Ranking Models (NRMs). EMPRA manipulates sentence-level embeddings, guiding them towards pertinent context related to the query while preserving semantic integrity. This process generates adversarial texts that seamlessly integrate with the original content and remain imperceptible to humans. Our extensive evaluation conducted on the widely-used MS MARCO V1 passage collection demonstrate the effectiveness of EMPRA against a wide range of state-of-the-art baselines in promoting a specific set of target documents within a given ranked results. Specifically, EMPRA successfully achieves a re-ranking of almost 96% of target documents originally ranked between 51-100 to rank within the top 10. Furthermore, EMPRA does not depend on surrogate models for adversarial text generation, enhancing its robustness against different NRMs in realistic settings.
Abstract:Text-to-Image (TTI) systems often support people during ideation, the early stages of a creative process when exposure to a broad set of relevant images can help explore the design space. Since ideation is an important subclass of TTI tasks, understanding how to quantitatively evaluate TTI systems according to how well they support ideation is crucial to promoting research and development for these users. However, existing evaluation metrics for TTI remain focused on distributional similarity metrics like Fr\'echet Inception Distance (FID). We take an alternative approach and, based on established methods from ranking evaluation, develop TTI evaluation metrics with explicit models of how users browse and interact with sets of spatially arranged generated images. Our proposed offline evaluation metrics for TTI not only capture how relevant generated images are with respect to the user's ideation need but also take into consideration the diversity and arrangement of the set of generated images. We analyze our proposed family of TTI metrics using human studies on image grids generated by three different TTI systems based on subsets of the widely used benchmarks such as MS-COCO captions and Localized Narratives as well as prompts used in naturalistic settings. Our results demonstrate that grounding metrics in how people use systems is an important and understudied area of benchmark design.
Abstract:Seamless interaction between AI agents and humans using natural language remains a key goal in AI research. This paper addresses the challenges of developing interactive agents capable of understanding and executing grounded natural language instructions through the IGLU competition at NeurIPS. Despite advancements, challenges such as a scarcity of appropriate datasets and the need for effective evaluation platforms persist. We introduce a scalable data collection tool for gathering interactive grounded language instructions within a Minecraft-like environment, resulting in a Multi-Modal dataset with around 9,000 utterances and over 1,000 clarification questions. Additionally, we present a Human-in-the-Loop interactive evaluation platform for qualitative analysis and comparison of agent performance through multi-turn communication with human annotators. We offer to the community these assets referred to as IDAT (IGLU Dataset And Toolkit) which aim to advance the development of intelligent, interactive AI agents and provide essential resources for further research.
Abstract:The rapid development of Large Language Models (LLMs) has led to a surge in applications that facilitate collaboration among multiple agents, assisting humans in their daily tasks. However, a significant gap remains in assessing to what extent LLM-powered applications genuinely enhance user experience and task execution efficiency. This highlights the need to verify utility of LLM-powered applications, particularly by ensuring alignment between the application's functionality and end-user needs. We introduce AgentEval, a novel framework designed to simplify the utility verification process by automatically proposing a set of criteria tailored to the unique purpose of any given application. This allows for a comprehensive assessment, quantifying the utility of an application against the suggested criteria. We present a comprehensive analysis of the effectiveness and robustness of AgentEval for two open source datasets including Math Problem solving and ALFWorld House-hold related tasks. For reproducibility purposes, we make the data, code and all the logs publicly available at https://bit.ly/3w3yKcS .
Abstract:We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.
Abstract:In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.