Current large language models (LLMs) can exhibit near-human levels of performance on many natural language-based tasks, including open-domain question answering. Unfortunately, at this time, they also convincingly hallucinate incorrect answers, so that responses to questions must be verified against external sources before they can be accepted at face value. In this paper, we report two simple experiments to automatically validate generated answers against a corpus. We base our experiments on questions and passages from the MS MARCO (V1) test collection, and a retrieval pipeline consisting of sparse retrieval, dense retrieval and neural rerankers. In the first experiment, we validate the generated answer in its entirety. After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer. We then present the LLM with the combination of the question + generated answer + retrieved answer, prompting it to indicate if the generated answer can be supported by the retrieved answer. In the second experiment, we consider the generated answer at a more granular level, prompting the LLM to extract a list of factual statements from the answer and verifying each statement separately. We query the corpus with each factual statement and then present the LLM with the statement and the corresponding retrieved evidence. The LLM is prompted to indicate if the statement can be supported and make necessary edits using the retrieved material. With an accuracy of over 80%, we find that an LLM is capable of verifying its generated answer when a corpus of supporting material is provided. However, manual assessment of a random sample of questions reveals that incorrect generated answers are missed by this verification process. While this verification process can reduce hallucinations, it can not entirely eliminate them.
Current large language models (LLMs) can exhibit near-human levels of performance on many natural language tasks, including open-domain question answering. Unfortunately, they also convincingly hallucinate incorrect answers, so that responses to questions must be verified against external sources before they can be accepted at face value. In this paper, we report a simple experiment to automatically verify generated answers against a corpus. After presenting a question to an LLM and receiving a generated answer, we query the corpus with the combination of the question + generated answer. We then present the LLM with the combination of the question + generated answer + retrieved answer, prompting it to indicate if the generated answer can be supported by the retrieved answer. We base our experiment on questions and passages from the MS MARCO (V1) test collection, exploring three retrieval approaches ranging from standard BM25 to a full question answering stack, including a reader based on the LLM. For a large fraction of questions, we find that an LLM is capable of verifying its generated answer if appropriate supporting material is provided. However, with an accuracy of 70-80%, this approach cannot be fully relied upon to detect hallucinations.
Query performance prediction (QPP) is a core task in information retrieval. The QPP task is to predict the retrieval quality of a search system for a query without relevance judgments. Research has shown the effectiveness and usefulness of QPP for ad-hoc search. Recent years have witnessed considerable progress in conversational search (CS). Effective QPP could help a CS system to decide an appropriate action to be taken at the next turn. Despite its potential, QPP for CS has been little studied. We address this research gap by reproducing and studying the effectiveness of existing QPP methods in the context of CS. While the task of passage retrieval remains the same in the two settings, a user query in CS depends on the conversational history, introducing novel QPP challenges. In particular, we seek to explore to what extent findings from QPP methods for ad-hoc search generalize to three CS settings: (i) estimating the retrieval quality of different query rewriting-based retrieval methods, (ii) estimating the retrieval quality of a conversational dense retrieval method, and (iii) estimating the retrieval quality for top ranks vs. deeper-ranked lists. Our findings can be summarized as follows: (i) supervised QPP methods distinctly outperform unsupervised counterparts only when a large-scale training set is available; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in assessing the conversational dense retrieval method, ConvDR.
Human intelligence's adaptability is remarkable, allowing us to adjust to new tasks and multi-modal environments swiftly. This skill is evident from a young age as we acquire new abilities and solve problems by imitating others or following natural language instructions. The research community is actively pursuing the development of interactive "embodied agents" that can engage in natural conversations with humans and assist them with real-world tasks. These agents must possess the ability to promptly request feedback in case communication breaks down or instructions are unclear. Additionally, they must demonstrate proficiency in learning new vocabulary specific to a given domain. In this paper, we made the following contributions: (1) a crowd-sourcing tool for collecting grounded language instructions; (2) the largest dataset of grounded language instructions; and (3) several state-of-the-art baselines. These contributions are suitable as a foundation for further research.
Human intelligence can remarkably adapt quickly to new tasks and environments. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions. To facilitate research which can enable similar capabilities in machines, we made the following contributions (1) formalized the collaborative embodied agent using natural language task; (2) developed a tool for extensive and scalable data collection; and (3) collected the first dataset for interactive grounded language understanding.
The adoption of pre-trained language models to generate action plans for embodied agents is a promising research strategy. However, execution of instructions in real or simulated environments requires verification of the feasibility of actions as well as their relevance to the completion of a goal. We propose a new method that combines a language model and reinforcement learning for the task of building objects in a Minecraft-like environment according to the natural language instructions. Our method first generates a set of consistently achievable sub-goals from the instructions and then completes associated sub-tasks with a pre-trained RL policy. The proposed method formed the RL baseline at the IGLU 2022 competition.
Despite the advantages of their low-resource settings, traditional sparse retrievers depend on exact matching approaches between high-dimensional bag-of-words (BoW) representations of both the queries and the collection. As a result, retrieval performance is restricted by semantic discrepancies and vocabulary gaps. On the other hand, transformer-based dense retrievers introduce significant improvements in information retrieval tasks by exploiting low-dimensional contextualized representations of the corpus. While dense retrievers are known for their relative effectiveness, they suffer from lower efficiency and lack of generalization issues, when compared to sparse retrievers. For a lightweight retrieval task, high computational resources and time consumption are major barriers encouraging the renunciation of dense models despite potential gains. In this work, we propose boosting the performance of sparse retrievers by expanding both the queries and the documents with linked entities in two formats for the entity names: 1) explicit and 2) hashed. We employ a zero-shot end-to-end dense entity linking system for entity recognition and disambiguation to augment the corpus. By leveraging the advanced entity linking methods, we believe that the effectiveness gap between sparse and dense retrievers can be narrowed. We conduct our experiments on the MS MARCO passage dataset. Since we are concerned with the early stage retrieval in cascaded ranking architectures of large information retrieval systems, we evaluate our results using recall@1000. Our approach is also capable of retrieving documents for query subsets judged to be particularly difficult in prior work. We further demonstrate that the non-expanded and the expanded runs with both explicit and hashed entities retrieve complementary results. Consequently, we adopt a run fusion approach to maximize the benefits of entity linking.
Despite recent progress on conversational systems, they still do not perform smoothly and coherently when faced with ambiguous requests. When questions are unclear, conversational systems should have the ability to ask clarifying questions, rather than assuming a particular interpretation or simply responding that they do not understand. Previous studies have shown that users are more satisfied when asked a clarifying question, rather than receiving an unrelated response. While the research community has paid substantial attention to the problem of predicting query ambiguity in traditional search contexts, researchers have paid relatively little attention to predicting when this ambiguity is sufficient to warrant clarification in the context of conversational systems. In this paper, we propose an unsupervised method for predicting the need for clarification. This method is based on the measured coherency of results from an initial answer retrieval step, under the assumption that a less ambiguous query is more likely to retrieve more coherent results when compared to an ambiguous query. We build a graph from retrieved items based on their context similarity, treating measures of graph connectivity as indicators of ambiguity. We evaluate our approach on two recently released open-domain conversational question answering datasets, ClariQ and AmbigNQ, comparing it with neural and non-neural baselines. Our unsupervised approach performs as well as supervised approaches while providing better generalization.
Human intelligence has the remarkable ability to adapt to new tasks and environments quickly. Starting from a very young age, humans acquire new skills and learn how to solve new tasks either by imitating the behavior of others or by following provided natural language instructions. To facilitate research in this direction, we propose IGLU: Interactive Grounded Language Understanding in a Collaborative Environment. The primary goal of the competition is to approach the problem of how to develop interactive embodied agents that learn to solve a task while provided with grounded natural language instructions in a collaborative environment. Understanding the complexity of the challenge, we split it into sub-tasks to make it feasible for participants. This research challenge is naturally related, but not limited, to two fields of study that are highly relevant to the NeurIPS community: Natural Language Understanding and Generation (NLU/G) and Reinforcement Learning (RL). Therefore, the suggested challenge can bring two communities together to approach one of the crucial challenges in AI. Another critical aspect of the challenge is the dedication to perform a human-in-the-loop evaluation as a final evaluation for the agents developed by contestants.
The recent increase in the volume of online meetings necessitates automated tools for managing and organizing the material, especially when an attendee has missed the discussion and needs assistance in quickly exploring it. In this work, we propose a novel end-to-end framework for generating interactive questionnaires for preference-based meeting exploration. As a result, users are supplied with a list of suggested questions reflecting their preferences. Since the task is new, we introduce an automatic evaluation strategy. Namely, it measures how much the generated questions via questionnaire are answerable to ensure factual correctness and covers the source meeting for the depth of possible exploration.