Abstract:Embedding-based search is widely used in applications such as recommendation and retrieval-augmented generation (RAG). Recently, there is a growing demand to support these capabilities over personal data stored locally on devices. However, maintaining the necessary data structure associated with the embedding-based search is often infeasible due to its high storage overhead. For example, indexing 100 GB of raw data requires 150 to 700 GB of storage, making local deployment impractical. Reducing this overhead while maintaining search quality and latency becomes a critical challenge. In this paper, we present LEANN, a storage-efficient approximate nearest neighbor (ANN) search index optimized for resource-constrained personal devices. LEANN combines a compact graph-based structure with an efficient on-the-fly recomputation strategy to enable fast and accurate retrieval with minimal storage overhead. Our evaluation shows that LEANN reduces index size to under 5% of the original raw data, achieving up to 50 times smaller storage than standard indexes, while maintaining 90% top-3 recall in under 2 seconds on real-world question answering benchmarks.
Abstract:Text-attributed graph (TAG) provides a text description for each graph node, and few- and zero-shot node classification on TAGs have many applications in fields such as academia and social networks. Existing work utilizes various graph-based augmentation techniques to train the node and text embeddings, while text-based augmentations are largely unexplored. In this paper, we propose Text Semantics Augmentation (TSA) to improve accuracy by introducing more text semantic supervision signals. Specifically, we design two augmentation techniques, i.e., positive semantics matching and negative semantics contrast, to provide more reference texts for each graph node or text description. Positive semantic matching retrieves texts with similar embeddings to match with a graph node. Negative semantic contrast adds a negative prompt to construct a text description with the opposite semantics, which is contrasted with the original node and text. We evaluate TSA on 5 datasets and compare with 13 state-of-the-art baselines. The results show that TSA consistently outperforms all baselines, and its accuracy improvements over the best-performing baseline are usually over 5%.
Abstract:Smart contract is a kind of self-executing code based on blockchain technology with a wide range of application scenarios, but the traditional generation method relies on manual coding and expert auditing, which has a high threshold and low efficiency. Although Large Language Models (LLMs) show great potential in programming tasks, they still face challenges in smart contract generation w.r.t. effectiveness and security. To solve these problems, we propose FSM-SCG, a smart contract generation framework based on finite state machine (FSM) and LLMs, which significantly improves the quality of the generated code by abstracting user requirements to generate FSM, guiding LLMs to generate smart contracts, and iteratively optimizing the code with the feedback of compilation and security checks. The experimental results show that FSM-SCG significantly improves the quality of smart contract generation. Compared to the best baseline, FSM-SCG improves the compilation success rate of generated smart contract code by at most 48%, and reduces the average vulnerability risk score by approximately 68%.
Abstract:The growing context lengths of large language models (LLMs) pose significant challenges for efficient inference, primarily due to GPU memory and bandwidth constraints. We present RetroInfer, a novel system that reconceptualizes the key-value (KV) cache as a vector storage system which exploits the inherent attention sparsity to accelerate long-context LLM inference. At its core is the wave index, an Attention-aWare VEctor index that enables efficient and accurate retrieval of critical tokens through techniques such as tripartite attention approximation, accuracy-bounded attention estimation, and segmented clustering. Complementing this is the wave buffer, which coordinates KV cache placement and overlaps computation and data transfer across GPU and CPU to sustain high throughput. Unlike prior sparsity-based methods that struggle with token selection and hardware coordination, RetroInfer delivers robust performance without compromising model accuracy. Experiments on long-context benchmarks show up to 4.5X speedup over full attention within GPU memory limits and up to 10.5X over sparse attention baselines when KV cache is extended to CPU memory, all while preserving full-attention-level accuracy.
Abstract:GraphRAG enhances large language models (LLMs) to generate quality answers for user questions by retrieving related facts from external knowledge graphs. Existing GraphRAG methods adopt a fixed graph traversal strategy for fact retrieval but we observe that user questions come in different types and require different graph traversal strategies. As such, existing GraphRAG methods are limited in effectiveness (i.e., quality of the generated answers) and/or efficiency (i.e., response time or the number of used tokens). In this paper, we propose to classify the questions according to a complete four-class taxonomy and adaptively select the appropriate graph traversal strategy for each type of questions. Our system PolyG is essentially a query planner for GraphRAG and can handle diverse questions with an unified interface and execution engine. Compared with SOTA GraphRAG methods, PolyG achieves an overall win rate of 75% on generation quality and a speedup up to 4x on response time.
Abstract:Temporal graph neural networks (TGNNs) outperform regular GNNs by incorporating time information into graph-based operations. However, TGNNs adopt specialized models (e.g., TGN, TGAT, and APAN ) and require tailored training frameworks (e.g., TGL and ETC). In this paper, we propose TF-TGN, which uses Transformer decoder as the backbone model for TGNN to enjoy Transformer's codebase for efficient training. In particular, Transformer achieves tremendous success for language modeling, and thus the community developed high-performance kernels (e.g., flash-attention and memory-efficient attention) and efficient distributed training schemes (e.g., PyTorch FSDP, DeepSpeed, and Megatron-LM). We observe that TGNN resembles language modeling, i.e., the message aggregation operation between chronologically occurring nodes and their temporal neighbors in TGNNs can be structured as sequence modeling. Beside this similarity, we also incorporate a series of algorithm designs including suffix infilling, temporal graph attention with self-loop, and causal masking self-attention to make TF-TGN work. During training, existing systems are slow in transforming the graph topology and conducting graph sampling. As such, we propose methods to parallelize the CSR format conversion and graph sampling. We also adapt Transformer codebase to train TF-TGN efficiently with multiple GPUs. We experiment with 9 graphs and compare with 2 state-of-the-art TGNN training frameworks. The results show that TF-TGN can accelerate training by over 2.20 while providing comparable or even superior accuracy to existing SOTA TGNNs. TF-TGN is available at https://github.com/qianghuangwhu/TF-TGN.
Abstract:Text-attributed graph (TAG) is an important type of graph structured data with text descriptions for each node. Few- and zero-shot node classification on TAGs have many applications in fields such as academia and social networks. However, the two tasks are challenging due to the lack of supervision signals, and existing methods only use the contrastive loss to align graph-based node embedding and language-based text embedding. In this paper, we propose Hound to improve accuracy by introducing more supervision signals, and the core idea is to go beyond the node-text pairs that come with data. Specifically, we design three augmentation techniques, i.e., node perturbation, text matching, and semantics negation to provide more reference nodes for each text and vice versa. Node perturbation adds/drops edges to produce diversified node embeddings that can be matched with a text. Text matching retrieves texts with similar embeddings to match with a node. Semantics negation uses a negative prompt to construct a negative text with the opposite semantics, which is contrasted with the original node and text. We evaluate Hound on 5 datasets and compare with 13 state-of-the-art baselines. The results show that Hound consistently outperforms all baselines, and its accuracy improvements over the best-performing baseline are usually over 5%.
Abstract:Vertical federated learning (VFL) considers the case that the features of data samples are partitioned over different participants. VFL consists of two main steps, i.e., identify the common data samples for all participants (alignment) and train model using the aligned data samples (training). However, when there are many participants and data samples, both alignment and training become slow. As such, we propose TreeCSS as an efficient VFL framework that accelerates the two main steps. In particular, for sample alignment, we design an efficient multi-party private set intersection (MPSI) protocol called Tree-MPSI, which adopts a tree-based structure and a data-volume-aware scheduling strategy to parallelize alignment among the participants. As model training time scales with the number of data samples, we conduct coreset selection (CSS) to choose some representative data samples for training. Our CCS method adopts a clustering-based scheme for security and generality, which first clusters the features locally on each participant and then merges the local clustering results to select representative samples. In addition, we weight the samples according to their distances to the centroids to reflect their importance to model training. We evaluate the effectiveness and efficiency of our TreeCSS framework on various datasets and models. The results show that compared with vanilla VFL, TreeCSS accelerates training by up to 2.93x and achieves comparable model accuracy.
Abstract:Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications. To train GNNs on large graphs that exceed CPU memory, several systems store data on disk and conduct out-of-core processing. However, these systems suffer from either read amplification when reading node features that are usually smaller than a disk page or degraded model accuracy by treating the graph as disconnected partitions. To close this gap, we build a system called DiskGNN, which achieves high I/O efficiency and thus fast training without hurting model accuracy. The key technique used by DiskGNN is offline sampling, which helps decouple graph sampling from model computation. In particular, by conducting graph sampling beforehand, DiskGNN acquires the node features that will be accessed by model computation, and such information is utilized to pack the target node features contiguously on disk to avoid read amplification. Besides, \name{} also adopts designs including four-level feature store to fully utilize the memory hierarchy to cache node features and reduce disk access, batched packing to accelerate the feature packing process, and pipelined training to overlap disk access with other operations. We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training. The results show that DiskGNN can speed up the baselines by over 8x while matching their best model accuracy.
Abstract:Global popularity (GP) bias is the phenomenon that popular items are recommended much more frequently than they should be, which goes against the goal of providing personalized recommendations and harms user experience and recommendation accuracy. Many methods have been proposed to reduce GP bias but they fail to notice the fundamental problem of GP, i.e., it considers popularity from a \textit{global} perspective of \textit{all users} and uses a single set of popular items, and thus cannot capture the interests of individual users. As such, we propose a user-aware version of item popularity named \textit{personal popularity} (PP), which identifies different popular items for each user by considering the users that share similar interests. As PP models the preferences of individual users, it naturally helps to produce personalized recommendations and mitigate GP bias. To integrate PP into recommendation, we design a general \textit{personal popularity aware counterfactual} (PPAC) framework, which adapts easily to existing recommendation models. In particular, PPAC recognizes that PP and GP have both direct and indirect effects on recommendations and controls direct effects with counterfactual inference techniques for unbiased recommendations. All codes and datasets are available at \url{https://github.com/Stevenn9981/PPAC}.