Abstract:Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
Abstract:With the increasing size of frontier LLMs, post-training quantization has become the standard for memory-efficient deployment. Recent work has shown that basic rounding-based quantization schemes pose security risks, as they can be exploited to inject malicious behaviors into quantized models that remain hidden in full precision. However, existing attacks cannot be applied to more complex quantization methods, such as the GGUF family used in the popular ollama and llama.cpp frameworks. In this work, we address this gap by introducing the first attack on GGUF. Our key insight is that the quantization error -- the difference between the full-precision weights and their (de-)quantized version -- provides sufficient flexibility to construct malicious quantized models that appear benign in full precision. Leveraging this, we develop an attack that trains the target malicious LLM while constraining its weights based on quantization errors. We demonstrate the effectiveness of our attack on three popular LLMs across nine GGUF quantization data types on three diverse attack scenarios: insecure code generation ($\Delta$=$88.7\%$), targeted content injection ($\Delta$=$85.0\%$), and benign instruction refusal ($\Delta$=$30.1\%$). Our attack highlights that (1) the most widely used post-training quantization method is susceptible to adversarial interferences, and (2) the complexity of quantization schemes alone is insufficient as a defense.
Abstract:LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.
Abstract:Recent LLMs have significantly improved reasoning capabilities, primarily by including an explicit, lengthy Thinking process as part of generation. In this paper, we question whether this explicit thinking is necessary. Using the state-of-the-art DeepSeek-R1-Distill-Qwen, we find that bypassing the thinking process via simple prompting, denoted as NoThinking, can be surprisingly effective. When controlling for the number of tokens, NoThinking outperforms Thinking across a diverse set of seven challenging reasoning datasets--including mathematical problem solving, formal theorem proving, and coding--especially in low-budget settings, e.g., 51.3 vs. 28.9 on ACM 23 with 700 tokens. Notably, the performance of NoThinking becomes more competitive with pass@k as k increases. Building on this observation, we demonstrate that a parallel scaling approach that uses NoThinking to generate N outputs independently and aggregates them is highly effective. For aggregation, we use task-specific verifiers when available, or we apply simple best-of-N strategies such as confidence-based selection. Our method outperforms a range of baselines with similar latency using Thinking, and is comparable to Thinking with significantly longer latency (up to 9x). Together, our research encourages a reconsideration of the necessity of lengthy thinking processes, while also establishing a competitive reference for achieving strong reasoning performance in low-budget settings or at low latency using parallel scaling.
Abstract:Large language models (LLMs) have achieved notable success in code generation. However, they still frequently produce uncompilable output because their next-token inference procedure does not model formal aspects of code. Although constrained decoding is a promising approach to alleviate this issue, it has only been applied to handle either domain-specific languages or syntactic language features. This leaves typing errors, which are beyond the domain of syntax and generally hard to adequately constrain. To address this challenge, we introduce a type-constrained decoding approach that leverages type systems to guide code generation. We develop novel prefix automata for this purpose and introduce a sound approach to enforce well-typedness based on type inference and a search over inhabitable types. We formalize our approach on a simply-typed language and extend it to TypeScript to demonstrate practicality. Our evaluation on HumanEval shows that our approach reduces compilation errors by more than half and increases functional correctness in code synthesis, translation, and repair tasks across LLMs of various sizes and model families, including SOTA open-weight models with more than 30B parameters.
Abstract:The automatic generation of programs has long been a fundamental challenge in computer science. Recent benchmarks have shown that large language models (LLMs) can effectively generate code at the function level, make code edits, and solve algorithmic coding tasks. However, to achieve full automation, LLMs should be able to generate production-quality, self-contained application modules. To evaluate the capabilities of LLMs in solving this challenge, we introduce BaxBench, a novel evaluation benchmark consisting of 392 tasks for the generation of backend applications. We focus on backends for three critical reasons: (i) they are practically relevant, building the core components of most modern web and cloud software, (ii) they are difficult to get right, requiring multiple functions and files to achieve the desired functionality, and (iii) they are security-critical, as they are exposed to untrusted third-parties, making secure solutions that prevent deployment-time attacks an imperative. BaxBench validates the functionality of the generated applications with comprehensive test cases, and assesses their security exposure by executing end-to-end exploits. Our experiments reveal key limitations of current LLMs in both functionality and security: (i) even the best model, OpenAI o1, achieves a mere 60% on code correctness; (ii) on average, we could successfully execute security exploits on more than half of the correct programs generated by each LLM; and (iii) in less popular backend frameworks, models further struggle to generate correct and secure applications. Progress on BaxBench signifies important steps towards autonomous and secure software development with LLMs.
Abstract:AI for Mathematics (AI4Math) is not only intriguing intellectually but also crucial for AI-driven discovery in science, engineering, and beyond. Extensive efforts on AI4Math have mirrored techniques in NLP, in particular, training large language models on carefully curated math datasets in text form. As a complementary yet less explored avenue, formal mathematical reasoning is grounded in formal systems such as proof assistants, which can verify the correctness of reasoning and provide automatic feedback. In this position paper, we advocate for formal mathematical reasoning and argue that it is indispensable for advancing AI4Math to the next level. In recent years, we have seen steady progress in using AI to perform formal reasoning, including core tasks such as theorem proving and autoformalization, as well as emerging applications such as verifiable generation of code and hardware designs. However, significant challenges remain to be solved for AI to truly master mathematics and achieve broader impact. We summarize existing progress, discuss open challenges, and envision critical milestones to measure future success. At this inflection point for formal mathematical reasoning, we call on the research community to come together to drive transformative advancements in this field.
Abstract:Text-driven video editing utilizing generative diffusion models has garnered significant attention due to their potential applications. However, existing approaches are constrained by the limited word embeddings provided in pre-training, which hinders nuanced editing targeting open concepts with specific attributes. Directly altering the keywords in target prompts often results in unintended disruptions to the attention mechanisms. To achieve more flexible editing easily, this work proposes an improved concept-augmented video editing approach that generates diverse and stable target videos flexibly by devising abstract conceptual pairs. Specifically, the framework involves concept-augmented textual inversion and a dual prior supervision mechanism. The former enables plug-and-play guidance of stable diffusion for video editing, effectively capturing target attributes for more stylized results. The dual prior supervision mechanism significantly enhances video stability and fidelity. Comprehensive evaluations demonstrate that our approach generates more stable and lifelike videos, outperforming state-of-the-art methods.
Abstract:Modern code completion engines, powered by large language models, have demonstrated impressive capabilities to generate functionally correct code based on surrounding context. As these tools are extensively used by millions of developers, it is crucial to investigate their security implications. In this work, we present INSEC, a novel attack that directs code completion engines towards generating vulnerable code. In line with most commercial completion engines, such as GitHub Copilot, INSEC assumes only black-box query access to the targeted engine, without requiring any knowledge of the engine's internals. Our attack works by inserting a malicious attack string as a short comment in the completion input. To derive the attack string, we design a series of specialized initialization schemes and an optimization procedure for further refinement. We demonstrate the strength of INSEC not only on state-of-the-art open-source models but also on black-box commercial services such as the OpenAI API and GitHub Copilot. On a comprehensive set of security-critical test cases covering 16 CWEs across 5 programming languages, INSEC significantly increases the likelihood of the considered completion engines in generating unsafe code by >50% in absolute, while maintaining the ability in producing functionally correct code. At the same time, our attack has low resource requirements, and can be developed for a cost of well under ten USD on commodity hardware.
Abstract:Rigorous software testing is crucial for developing and maintaining high-quality code, making automated test generation a promising avenue for both improving software quality and boosting the effectiveness of code generation methods. However, while code generation with Large Language Models (LLMs) is an extraordinarily active research area, test generation remains relatively unexplored. We address this gap and investigate the capability of LLM-based Code Agents for formalizing user issues into test cases. To this end, we propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth patches, and golden tests. We find that LLMs generally perform surprisingly well at generating relevant test cases with Code Agents designed for code repair exceeding the performance of systems designed specifically for test generation. Further, as test generation is a similar but more structured task than code generation, it allows for a more fine-grained analysis using fail-to-pass rate and coverage metrics, providing a dual metric for analyzing systems designed for code repair. Finally, we find that generated tests are an effective filter for proposed code fixes, doubling the precision of SWE-Agent.