Get our free extension to see links to code for papers anywhere online!Free extension: code links for papers anywhere!Free add-on: See code for papers anywhere!

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, Kannan Ramchandran, Jiantao Jiao

Large Language Models (LLMs) can acquire extensive world knowledge through pre-training on large corpora. However, due to exposure to low-quality data, LLMs may exhibit harmful behavior without aligning with human values. The dominant approach for steering LLMs towards beneficial behavior involves Reinforcement Learning with Human Feedback (RLHF), with Proximal Policy Optimization (PPO) serving as the default RL optimizer. Despite its effectiveness, PPO has limitations when optimizing rewards trained from comparison-based loss. Primarily, PPO is not invariant to equivalent reward functions containing identical preference information due to the need to calibrate the reward scale. Additionally, PPO's necessity for token-wise updates introduces complexity in both function approximation and algorithm design compared to trajectory-wise optimization. This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm, Pairwise Proximal Policy Optimization (P3O) that operates directly on comparative rewards. We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO. Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods. In summary, this work introduces a simpler yet effective approach for aligning LLMs to human preferences through relative feedback.

Via

Brett Levac, Ajil Jalal, Kannan Ramchandran, Jonathan I. Tamir

Magnetic resonance imaging (MRI) exam protocols consist of multiple contrast-weighted images of the same anatomy to emphasize different tissue properties. Due to the long acquisition times required to collect fully sampled k-space measurements, it is common to only collect a fraction of k-space for some, or all, of the scans and subsequently solve an inverse problem for each contrast to recover the desired image from sub-sampled measurements. Recently, there has been a push to further accelerate MRI exams using data-driven priors, and generative models in particular, to regularize the ill-posed inverse problem of image reconstruction. These methods have shown promising improvements over classical methods. However, many of the approaches neglect the multi-contrast nature of clinical MRI exams and treat each scan as an independent reconstruction. In this work we show that by learning a joint Bayesian prior over multi-contrast data with a score-based generative model we are able to leverage the underlying structure between multi-contrast images and thus improve image reconstruction fidelity over generative models that only reconstruct images of a single contrast.

Via

Nived Rajaraman, Devvrit, Aryan Mokhtari, Kannan Ramchandran

Pruning schemes have been widely used in practice to reduce the complexity of trained models with a massive number of parameters. Several practical studies have shown that pruning an overparameterized model and fine-tuning generalizes well to new samples. Although the above pipeline, which we refer to as pruning + fine-tuning, has been extremely successful in lowering the complexity of trained models, there is very little known about the theory behind this success. In this paper we address this issue by investigating the pruning + fine-tuning framework on the overparameterized matrix sensing problem, with the ground truth denoted $U_\star \in \mathbb{R}^{d \times r}$ and the overparameterized model $U \in \mathbb{R}^{d \times k}$ with $k \gg r$. We study the approximate local minima of the empirical mean square error, augmented with a smooth version of a group Lasso regularizer, $\sum_{i=1}^k \| U e_i \|_2$ and show that pruning the low $\ell_2$-norm columns results in a solution $U_{\text{prune}}$ which has the minimum number of columns $r$, yet is close to the ground truth in training loss. Initializing the subsequent fine-tuning phase from $U_{\text{prune}}$, the resulting solution converges linearly to a generalization error of $O(\sqrt{rd/n})$ ignoring lower order terms, which is statistically optimal. While our analysis provides insights into the role of regularization in pruning, we also show that running gradient descent in the absence of regularization results in models which {are not suitable for greedy pruning}, i.e., many columns could have their $\ell_2$ norm comparable to that of the maximum. Lastly, we extend our results for the training and pruning of two-layer neural networks with quadratic activation functions. Our results provide the first rigorous insights on why greedy pruning + fine-tuning leads to smaller models which also generalize well.

Via

Nived Rajaraman, Yanjun Han, Jiantao Jiao, Kannan Ramchandran

We consider the sequential decision-making problem where the mean outcome is a non-linear function of the chosen action. Compared with the linear model, two curious phenomena arise in non-linear models: first, in addition to the "learning phase" with a standard parametric rate for estimation or regret, there is an "burn-in period" with a fixed cost determined by the non-linear function; second, achieving the smallest burn-in cost requires new exploration algorithms. For a special family of non-linear functions named ridge functions in the literature, we derive upper and lower bounds on the optimal burn-in cost, and in addition, on the entire learning trajectory during the burn-in period via differential equations. In particular, a two-stage algorithm that first finds a good initial action and then treats the problem as locally linear is statistically optimal. In contrast, several classical algorithms, such as UCB and algorithms relying on regression oracles, are provably suboptimal.

Via

Justin Kang, Ramtin Pedarsani, Kannan Ramchandran

Modern data aggregation often takes the form of a platform collecting data from a network of users. More than ever, these users are now requesting that the data they provide is protected with a guarantee of privacy. This has led to the study of optimal data acquisition frameworks, where the optimality criterion is typically the maximization of utility for the agent trying to acquire the data. This involves determining how to allocate payments to users for the purchase of their data at various privacy levels. The main goal of this paper is to characterize a fair amount to pay users for their data at a given privacy level. We propose an axiomatic definition of fairness, analogous to the celebrated Shapley value. Two concepts for fairness are introduced. The first treats the platform and users as members of a common coalition and provides a complete description of how to divide the utility among the platform and users. In the second concept, fairness is defined only among users, leading to a potential fairness-constrained mechanism design problem for the platform. We consider explicit examples involving private heterogeneous data and show how these notions of fairness can be applied. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints.

Via

Yigit Efe Erginbas, Justin Singh Kang, Amirali Aghazadeh, Kannan Ramchandran

Fourier transformations of pseudo-Boolean functions are popular tools for analyzing functions of binary sequences. Real-world functions often have structures that manifest in a sparse Fourier transform, and previous works have shown that under the assumption of sparsity the transform can be computed efficiently. But what if we want to compute the Fourier transform of functions defined over a $q$-ary alphabet? These types of functions arise naturally in many areas including biology. A typical workaround is to encode the $q$-ary sequence in binary, however, this approach is computationally inefficient and fundamentally incompatible with the existing sparse Fourier transform techniques. Herein, we develop a sparse Fourier transform algorithm specifically for $q$-ary functions of length $n$ sequences, dubbed $q$-SFT, which provably computes an $S$-sparse transform with vanishing error as $q^n \rightarrow \infty$ in $O(Sn)$ function evaluations and $O(S n^2 \log q)$ computations, where $S = q^{n\delta}$ for some $\delta < 1$. Under certain assumptions, we show that for fixed $q$, a robust version of $q$-SFT has a sample complexity of $O(Sn^2)$ and a computational complexity of $O(Sn^3)$ with the same asymptotic guarantees. We present numerical simulations on synthetic and real-world RNA data, demonstrating the scalability of $q$-SFT to massively high dimensional $q$-ary functions.

Via

Yigit Efe Erginbas, Soham Phade, Kannan Ramchandran

Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects.

Via

Amirali Aghazadeh, Nived Rajaraman, Tony Tu, Kannan Ramchandran

Data-driven machine learning models are being increasingly employed in several important inference problems in biology, chemistry, and physics which require learning over combinatorial spaces. Recent empirical evidence (see, e.g., [1], [2], [3]) suggests that regularizing the spectral representation of such models improves their generalization power when labeled data is scarce. However, despite these empirical studies, the theoretical underpinning of when and how spectral regularization enables improved generalization is poorly understood. In this paper, we focus on learning pseudo-Boolean functions and demonstrate that regularizing the empirical mean squared error by the L_1 norm of the spectral transform of the learned function reshapes the loss landscape and allows for data-frugal learning, under a restricted secant condition on the learner's empirical error measured against the ground truth function. Under a weaker quadratic growth condition, we show that stationary points which also approximately interpolate the training data points achieve statistically optimal generalization performance. Complementing our theory, we empirically demonstrate that running gradient descent on the regularized loss results in a better generalization performance compared to baseline algorithms in several data-scarce real-world problems.

Via

Yigit Efe Erginbas, Soham Phade, Kannan Ramchandran

Recommendation systems when employed in markets play a dual role: they assist users in selecting their most desired items from a large pool and they help in allocating a limited number of items to the users who desire them the most. Despite the prevalence of capacity constraints on allocations in many real-world recommendation settings, a principled way of incorporating them in the design of these systems has been lacking. Motivated by this, we propose an interactive framework where the system provider can enhance the quality of recommendations to the users by opportunistically exploring allocations that maximize user rewards and respect the capacity constraints using appropriate pricing mechanisms. We model the problem as an instance of a low-rank combinatorial multi-armed bandit problem with selection constraints on the arms. We employ an integrated approach using techniques from collaborative filtering, combinatorial bandits, and optimal resource allocation to provide an algorithm that provably achieves sub-linear regret, namely $\tilde{\mathcal{O}} ( \sqrt{N M (N+M) RT} )$ in $T$ rounds for a problem with $N$ users, $M$ items and rank $R$ mean reward matrix. Empirical studies on synthetic and real-world data also demonstrate the effectiveness and performance of our approach.

Via

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael W. Mahoney, Joseph E. Gonzalez, Kannan Ramchandran, Prateek Mittal

Due to their decentralized nature, federated learning (FL) systems have an inherent vulnerability during their training to adversarial backdoor attacks. In this type of attack, the goal of the attacker is to use poisoned updates to implant so-called backdoors into the learned model such that, at test time, the model's outputs can be fixed to a given target for certain inputs. (As a simple toy example, if a user types "people from New York" into a mobile keyboard app that uses a backdoored next word prediction model, then the model could autocomplete the sentence to "people from New York are rude"). Prior work has shown that backdoors can be inserted into FL models, but these backdoors are often not durable, i.e., they do not remain in the model after the attacker stops uploading poisoned updates. Thus, since training typically continues progressively in production FL systems, an inserted backdoor may not survive until deployment. Here, we propose Neurotoxin, a simple one-line modification to existing backdoor attacks that acts by attacking parameters that are changed less in magnitude during training. We conduct an exhaustive evaluation across ten natural language processing and computer vision tasks, and we find that we can double the durability of state of the art backdoors.

Via