Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Proof: Accelerating Approximate Aggregation Queries with Expensive Predicates


Jul 28, 2021
Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, Matei Zaharia


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training


Feb 17, 2021
Kai Sheng Tai, Peter Bailis, Gregory Valiant


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Leveraging Organizational Resources to Adapt Models to New Data Modalities


Aug 23, 2020
Sahaana Suri, Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao Zeng, Peter Bailis, Sugato Basu, Girija Narlikar, Christopher Re, Abishek Sethi

* PVLDB,13(12): 3396-3410, 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics


Jul 25, 2020
Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter Bailis, Matei Zaharia


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Similarity Search for Efficient Active Learning and Search of Rare Concepts


Jun 30, 2020
Cody Coleman, Edward Chou, Sean Culatana, Peter Bailis, Alexander C. Berg, Roshan Sumbaly, Matei Zaharia, I. Zeki Yalniz


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Chromatic Learning for Sparse Datasets


Jun 06, 2020
Vladimir Feinberg, Peter Bailis

* 15 pages, 8 figures, under review 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Model Assertions for Monitoring and Improving ML Models


Mar 11, 2020
Daniel Kang, Deepti Raghavan, Peter Bailis, Matei Zaharia

* MLSys 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MLPerf Training Benchmark


Oct 30, 2019
Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim Hazelwood, Andrew Hock, Xinyuan Huang, Bill Jia, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff Young, Matei Zaharia


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
3
>>