School of Computer Science, Shenyang Aerospace University
Abstract:Humans possess the remarkable ability to foresee the future to a certain extent based on present observations, a skill we term as foresight minds. However, this capability remains largely under explored within existing Multimodal Large Language Models (MLLMs), hindering their capacity to learn the fundamental principles of how things operate and the intentions behind the observed subjects. To address this issue, we introduce the integration of future modeling into the existing learning frameworks of MLLMs. By utilizing the subject trajectory, a highly structured representation of a consecutive frame sequence, as a learning objective, we aim to bridge the gap between the past and the future. We propose two innovative methods to empower MLLMs with foresight minds, Foresight Pre-Training (FPT) and Foresight Instruction-Tuning (FIT), which are inspired by the modern learning paradigm of LLMs. Specifically, FPT jointly training various tasks centered on trajectories, enabling MLLMs to learn how to attend and predict entire trajectories from a given initial observation. Then, FIT requires MLLMs to first predict trajectories of related objects and then reason about potential future events based on them. Aided by FPT and FIT, we build a novel and unified MLLM named Merlin that supports multi-images input and analysis about potential actions of multiple objects for the future reasoning. Experimental results show Merlin powerful foresight minds with impressive performance on both future reasoning and visual comprehension tasks.
Abstract:In this technical report, we present Skywork-13B, a family of large language models (LLMs) trained on a corpus of over 3.2 trillion tokens drawn from both English and Chinese texts. This bilingual foundation model is the most extensively trained and openly published LLMs of comparable size to date. We introduce a two-stage training methodology using a segmented corpus, targeting general purpose training and then domain-specific enhancement training, respectively. We show that our model not only excels on popular benchmarks, but also achieves \emph{state of the art} performance in Chinese language modeling on diverse domains. Furthermore, we propose a novel leakage detection method, demonstrating that test data contamination is a pressing issue warranting further investigation by the LLM community. To spur future research, we release Skywork-13B along with checkpoints obtained during intermediate stages of the training process. We are also releasing part of our SkyPile corpus, a collection of over 150 billion tokens of web text, which is the largest high quality open Chinese pre-training corpus to date. We hope Skywork-13B and our open corpus will serve as a valuable open-source resource to democratize access to high-quality LLMs.
Abstract:Graph Neural Networks (GNNs) have achieved great success in representing data with dependencies by recursively propagating and aggregating messages along the edges. However, edges in real-world graphs often have varying degrees of difficulty, and some edges may even be noisy to the downstream tasks. Therefore, existing GNNs may lead to suboptimal learned representations because they usually treat every edge in the graph equally. On the other hand, Curriculum Learning (CL), which mimics the human learning principle of learning data samples in a meaningful order, has been shown to be effective in improving the generalization ability and robustness of representation learners by gradually proceeding from easy to more difficult samples during training. Unfortunately, existing CL strategies are designed for independent data samples and cannot trivially generalize to handle data dependencies. To address these issues, we propose a novel CL strategy to gradually incorporate more edges into training according to their difficulty from easy to hard, where the degree of difficulty is measured by how well the edges are expected given the model training status. We demonstrate the strength of our proposed method in improving the generalization ability and robustness of learned representations through extensive experiments on nine synthetic datasets and nine real-world datasets. The code for our proposed method is available at https://github.com/rollingstonezz/Curriculum_learning_for_GNNs.
Abstract:Open-ended Commonsense Reasoning is defined as solving a commonsense question without providing 1) a short list of answer candidates and 2) a pre-defined answer scope. Conventional ways of formulating the commonsense question into a question-answering form or utilizing external knowledge to learn retrieval-based methods are less applicable in the open-ended setting due to an inherent challenge. Without pre-defining an answer scope or a few candidates, open-ended commonsense reasoning entails predicting answers by searching over an extremely large searching space. Moreover, most questions require implicit multi-hop reasoning, which presents even more challenges to our problem. In this work, we leverage pre-trained language models to iteratively retrieve reasoning paths on the external knowledge base, which does not require task-specific supervision. The reasoning paths can help to identify the most precise answer to the commonsense question. We conduct experiments on two commonsense benchmark datasets. Compared to other approaches, our proposed method achieves better performance both quantitatively and qualitatively.
Abstract:Large language models (LLMs) have shown great potential to solve varieties of natural language processing (NLP) tasks, including mathematical reasoning. In this work, we present SkyMath, a large language model for mathematics with 13 billion parameters. By applying self-compare fine-tuning, we have enhanced mathematical reasoning abilities of Skywork-13B-Base remarkably. On GSM8K, SkyMath outperforms all known open-source models of similar size and has established a new SOTA performance.
Abstract:This paper introduces a new benchmark dataset, Open-Structure, for evaluating visual odometry and SLAM methods, which directly equips point and line measurements, correspondences, structural associations, and co-visibility factor graphs instead of providing raw images. Based on the proposed benchmark dataset, these 2D or 3D data can be directly input to different stages of SLAM pipelines to avoid the impact of the data preprocessing modules in ablation experiments. First, we propose a dataset generator for real-world and simulated scenarios. In real-world scenes, it maintains the same observations and occlusions as actual feature extraction results. Those generated simulation sequences enhance the dataset's diversity by introducing various carefully designed trajectories and observations. Second, a SLAM baseline is proposed using our dataset to evaluate widely used modules in camera pose tracking, parametrization, and optimization modules. By evaluating these state-of-the-art algorithms across different scenarios, we discern each module's strengths and weaknesses within the camera tracking and optimization process. Our dataset and baseline are available at \url{https://github.com/yanyan-li/Open-Structure}.
Abstract:The rise of deep learning algorithms has led to significant advancements in computer vision tasks, but their "black box" nature has raised concerns regarding interpretability. Explainable AI (XAI) has emerged as a critical area of research aiming to open this "black box", and shed light on the decision-making process of AI models. Visual explanations, as a subset of Explainable Artificial Intelligence (XAI), provide intuitive insights into the decision-making processes of AI models handling visual data by highlighting influential areas in an input image. Despite extensive research conducted on visual explanations, most evaluations are model-centered since the availability of corresponding real-world datasets with ground truth explanations is scarce in the context of image data. To bridge this gap, we introduce an XAI Benchmark comprising a dataset collection from diverse topics that provide both class labels and corresponding explanation annotations for images. We have processed data from diverse domains to align with our unified visual explanation framework. We introduce a comprehensive Visual Explanation pipeline, which integrates data loading, preprocessing, experimental setup, and model evaluation processes. This structure enables researchers to conduct fair comparisons of various visual explanation techniques. In addition, we provide a comprehensive review of over 10 evaluation methods for visual explanation to assist researchers in effectively utilizing our dataset collection. To further assess the performance of existing visual explanation methods, we conduct experiments on selected datasets using various model-centered and ground truth-centered evaluation metrics. We envision this benchmark could facilitate the advancement of visual explanation models. The XAI dataset collection and easy-to-use code for evaluation are publicly accessible at https://xaidataset.github.io.
Abstract:Explanation(attention)-guided learning is a method that enhances a model's predictive power by incorporating human understanding during the training phase. While attention-guided learning has shown promising results, it often involves time-consuming and computationally expensive model retraining. To address this issue, we introduce the attention-prompted prediction technique, which enables direct prediction guided by the attention prompt without the need for model retraining. However, this approach presents several challenges, including: 1) How to incorporate the visual attention prompt into the model's decision-making process and leverage it for future predictions even in the absence of a prompt? and 2) How to handle the incomplete information from the visual attention prompt? To tackle these challenges, we propose a novel framework called Visual Attention-Prompted Prediction and Learning, which seamlessly integrates visual attention prompts into the model's decision-making process and adapts to images both with and without attention prompts for prediction. To address the incomplete information of the visual attention prompt, we introduce a perturbation-based attention map modification method. Additionally, we propose an optimization-based mask aggregation method with a new weight learning function for adaptive perturbed annotation aggregation in the attention map modification process. Our overall framework is designed to learn in an attention-prompt guided multi-task manner to enhance future predictions even for samples without attention prompts and trained in an alternating manner for better convergence. Extensive experiments conducted on two datasets demonstrate the effectiveness of our proposed framework in enhancing predictions for samples, both with and without provided prompts.
Abstract:Deep generative models have been widely used for their ability to generate realistic data samples in various areas, such as images, molecules, text, and speech. One major goal of data generation is controllability, namely to generate new data with desired properties. Despite growing interest in the area of controllable generation, significant challenges still remain, including 1) disentangling desired properties with unrelated latent variables, 2) out-of-distribution property control, and 3) objective optimization for out-of-distribution property control. To address these challenges, in this paper, we propose a general framework to enhance VAE-based data generators with property controllability and ensure disentanglement. Our proposed objective can be optimized on both data seen and unseen in the training set. We propose a training procedure to train the objective in a semi-supervised manner by iteratively conducting mutual mappings between the data and properties. The proposed framework is implemented on four VAE-based controllable generators to evaluate its performance on property error, disentanglement, generation quality, and training time. The results indicate that our proposed framework enables more precise control over the properties of generated samples in a short training time, ensuring the disentanglement and keeping the validity of the generated samples.
Abstract:Explainable AI seeks to bring light to the decision-making processes of black-box models. Traditional saliency-based methods, while highlighting influential data segments, often lack semantic understanding. Recent advancements, such as Concept Activation Vectors (CAVs) and Concept Bottleneck Models (CBMs), offer concept-based explanations but necessitate human-defined concepts. However, human-annotated concepts are expensive to attain. This paper introduces the Concept Bottleneck Surrogate Models (SurroCBM), a novel framework that aims to explain the black-box models with automatically discovered concepts. SurroCBM identifies shared and unique concepts across various black-box models and employs an explainable surrogate model for post-hoc explanations. An effective training strategy using self-generated data is proposed to enhance explanation quality continuously. Through extensive experiments, we demonstrate the efficacy of SurroCBM in concept discovery and explanation, underscoring its potential in advancing the field of explainable AI.