Abstract:Large Reasoning Models (LRMs) often suffer from \emph{overthinking}, a phenomenon in which redundant reasoning steps are generated after a correct solution has already been reached. Existing early reasoning exit methods primarily rely on output-level heuristics or trained probing models to skip redundant reasoning steps, thereby mitigating overthinking. However, these approaches typically require additional rollout computation or externally labeled datasets. In this paper, we propose \textbf{NEAT}, a \textbf{N}euron-based \textbf{E}arly re\textbf{A}soning exi\textbf{T} framework that monitors neuron-level activation dynamics to enable training-free early exits, without introducing additional test-time computation. NEAT identifies exit-associated neurons and tracks their activation patterns during reasoning to dynamically trigger early exit or suppress reflection, thereby reducing unnecessary reasoning while preserving solution quality. Experiments on four reasoning benchmarks across six models with different scales and architectures show that, for each model, NEAT achieves an average token reduction of 22\% to 28\% when averaged over the four benchmarks, while maintaining accuracy.
Abstract:Brain organization is increasingly characterized through multiple imaging modalities, most notably structural connectivity (SC) and functional connectivity (FC). Integrating these inherently distinct yet complementary data sources is essential for uncovering the cross-modal patterns that drive behavioral phenotypes. However, effective integration is hindered by the high dimensionality and non-linearity of connectome data, complex non-linear SC-FC coupling, and the challenge of disentangling shared information from modality-specific variations. To address these issues, we propose the Cross-Modal Joint-Individual Variational Network (CM-JIVNet), a unified probabilistic framework designed to learn factorized latent representations from paired SC-FC datasets. Our model utilizes a multi-head attention fusion module to capture non-linear cross-modal dependencies while isolating independent, modality-specific signals. Validated on Human Connectome Project Young Adult (HCP-YA) data, CM-JIVNet demonstrates superior performance in cross-modal reconstruction and behavioral trait prediction. By effectively disentangling joint and individual feature spaces, CM-JIVNet provides a robust, interpretable, and scalable solution for large-scale multimodal brain analysis.
Abstract:Recent advances in task-oriented dialogue (TOD) systems, driven by large language models (LLMs) with extensive API and tool integration, have enabled conversational agents to coordinate interleaved goals, maintain long-horizon context, and act proactively through asynchronous execution. These capabilities extend beyond traditional TOD systems, yet existing benchmarks lack systematic support for evaluating such agentic behaviors. To address this gap, we introduce ATOD, a benchmark and synthetic dialogue generation pipeline that produces richly annotated conversations requiring long-term reasoning. ATOD captures key characteristics of advanced TOD, including multi-goal coordination, dependency management, memory, adaptability, and proactivity. Building on ATOD, we propose ATOD-Eval, a holistic evaluation framework that translates these dimensions into fine-grained metrics and supports reproducible offline and online evaluation. We further present a strong agentic memory-based evaluator for benchmarking on ATOD. Experiments show that ATOD-Eval enables comprehensive assessment across task completion, agentic capability, and response quality, and that the proposed evaluator offers a better accuracy-efficiency tradeoff compared to existing memory- and LLM-based approaches under this evaluation setting.
Abstract:Empathetic speech dialogue requires not only understanding linguistic content but also perceiving rich paralinguistic information such as prosody, tone, and emotional intensity for affective understandings. Existing speech-to-speech large language models either rely on ASR transcription or use encoders to extract latent representations, often weakening affective information and contextual coherence in multi-turn dialogues. To address this, we propose \textbf{ES4R}, a framework for speech-based empathetic response generation. Our core innovation lies in explicitly modeling structured affective context before speech encoding, rather than relying on implicit learning by the encoder or explicit emotion supervision. Specifically, we introduce a dual-level attention mechanism to capture turn-level affective states and dialogue-level affective dynamics. The resulting affective representations are then integrated with textual semantics through speech-guided cross-modal attention to generate empathetic responses. For speech output, we employ energy-based strategy selection and style fusion to achieve empathetic speech synthesis. ES4R consistently outperforms strong baselines in both automatic and human evaluations and remains robust across different LLM backbones.
Abstract:Multimodal Large Language Models (MLLMs) rely on strong linguistic reasoning inherited from their base language models. However, multimodal instruction fine-tuning paradoxically degrades this text's reasoning capability, undermining multimodal performance. To address this issue, we propose a training-free framework to mitigate this degradation. Through layer-wise vision token masking, we reveal a common three-stage pattern in multimodal large language models: early-modal separation, mid-modal alignment, and late-modal degradation. By analyzing the behavior of MLLMs at different stages, we propose a plateau-guided model merging method that selectively injects base language model parameters into MLLMs. Experimental results based on five MLLMs on nine benchmarks demonstrate the effectiveness of our method. Attention-based analysis further reveals that merging shifts attention from diffuse, scattered patterns to focused localization on task-relevant visual regions. Our repository is on https://github.com/wzj1718/PlaM.
Abstract:Triple-based Iterative Retrieval-Augmented Generation (iRAG) mitigates document-level noise for multi-hop question answering. However, existing methods still face limitations: (i) greedy single-path expansion, which propagates early errors and fails to capture parallel evidence from different reasoning branches, and (ii) granularity-demand mismatch, where a single evidence representation struggles to balance noise control with contextual sufficiency. In this paper, we propose the Construction-Integration Retrieval and Adaptive Generation model, CIRAG. It introduces an Iterative Construction-Integration module that constructs candidate triples and history-conditionally integrates them to distill core triples and generate the next-hop query. This module mitigates the greedy trap by preserving multiple plausible evidence chains. Besides, we propose an Adaptive Cascaded Multi-Granularity Generation module that progressively expands contextual evidence based on the problem requirements, from triples to supporting sentences and full passages. Moreover, we introduce Trajectory Distillation, which distills the teacher model's integration policy into a lightweight student, enabling efficient and reliable long-horizon reasoning. Extensive experiments demonstrate that CIRAG achieves superior performance compared to existing iRAG methods.
Abstract:As LLMs shift toward autonomous agents, Deep Research has emerged as a pivotal metric. However, existing academic benchmarks like BrowseComp often fail to meet real-world demands for open-ended research, which requires robust skills in intent recognition, long-horizon decision-making, and cross-source verification. To address this, we introduce Step-DeepResearch, a cost-effective, end-to-end agent. We propose a Data Synthesis Strategy Based on Atomic Capabilities to reinforce planning and report writing, combined with a progressive training path from agentic mid-training to SFT and RL. Enhanced by a Checklist-style Judger, this approach significantly improves robustness. Furthermore, to bridge the evaluation gap in the Chinese domain, we establish ADR-Bench for realistic deep research scenarios. Experimental results show that Step-DeepResearch (32B) scores 61.4% on Scale AI Research Rubrics. On ADR-Bench, it significantly outperforms comparable models and rivals SOTA closed-source models like OpenAI and Gemini DeepResearch. These findings prove that refined training enables medium-sized models to achieve expert-level capabilities at industry-leading cost-efficiency.
Abstract:Continual graph learning (CGL) aims to enable graph neural networks to incrementally learn from a stream of graph structured data without forgetting previously acquired knowledge. Existing methods particularly those based on experience replay typically store and revisit past graph data to mitigate catastrophic forgetting. However, these approaches pose significant limitations, including privacy concerns, inefficiency. In this work, we propose AL GNN, a novel framework for continual graph learning that eliminates the need for backpropagation and replay buffers. Instead, AL GNN leverages principles from analytic learning theory to formulate learning as a recursive least squares optimization process. It maintains and updates model knowledge analytically through closed form classifier updates and a regularized feature autocorrelation matrix. This design enables efficient one pass training for each task, and inherently preserves data privacy by avoiding historical sample storage. Extensive experiments on multiple dynamic graph classification benchmarks demonstrate that AL GNN achieves competitive or superior performance compared to existing methods. For instance, it improves average performance by 10% on CoraFull and reduces forgetting by over 30% on Reddit, while also reducing training time by nearly 50% due to its backpropagation free design.
Abstract:Low-dose chest computed tomography (LDCT) inherently captures both pulmonary and cardiac structures, offering a unique opportunity for joint assessment of lung and cardiovascular health. However, most existing approaches treat these domains as independent tasks, overlooking their physiological interplay and shared imaging biomarkers. We propose an Explainable Cross-Disease Reasoning Framework that enables interpretable cardiopulmonary risk assessment from a single LDCT scan. The framework introduces an agentic reasoning process that emulates clinical diagnostic thinking-first perceiving pulmonary findings, then reasoning through established medical knowledge, and finally deriving a cardiovascular judgment with explanatory rationale. It integrates three synergistic components: a pulmonary perception module that summarizes lung abnormalities, a knowledge-guided reasoning module that infers their cardiovascular implications, and a cardiac representation module that encodes structural biomarkers. Their outputs are fused to produce a holistic cardiovascular risk prediction that is both accurate and physiologically grounded. Experiments on the NLST cohort demonstrate that the proposed framework achieves state-of-the-art performance for CVD screening and mortality prediction, outperforming single-disease and purely image-based baselines. Beyond quantitative gains, the framework provides human-verifiable reasoning that aligns with cardiological understanding, revealing coherent links between pulmonary abnormalities and cardiac stress mechanisms. Overall, this work establishes a unified and explainable paradigm for cardiovascular analysis from LDCT, bridging the gap between image-based prediction and mechanism-based medical interpretation.
Abstract:Survival prediction of cancers is crucial for clinical practice, as it informs mortality risks and influences treatment plans. However, a static model trained on a single dataset fails to adapt to the dynamically evolving clinical environment and continuous data streams, limiting its practical utility. While continual learning (CL) offers a solution to learn dynamically from new datasets, existing CL methods primarily focus on unimodal inputs and suffer from severe catastrophic forgetting in survival prediction. In real-world scenarios, multimodal inputs often provide comprehensive and complementary information, such as whole slide images and genomics; and neglecting inter-modal correlations negatively impacts the performance. To address the two challenges of catastrophic forgetting and complex inter-modal interactions between gigapixel whole slide images and genomics, we propose ConSurv, the first multimodal continual learning (MMCL) method for survival analysis. ConSurv incorporates two key components: Multi-staged Mixture of Experts (MS-MoE) and Feature Constrained Replay (FCR). MS-MoE captures both task-shared and task-specific knowledge at different learning stages of the network, including two modality encoders and the modality fusion component, learning inter-modal relationships. FCR further enhances learned knowledge and mitigates forgetting by restricting feature deviation of previous data at different levels, including encoder-level features of two modalities and the fusion-level representations. Additionally, we introduce a new benchmark integrating four datasets, Multimodal Survival Analysis Incremental Learning (MSAIL), for comprehensive evaluation in the CL setting. Extensive experiments demonstrate that ConSurv outperforms competing methods across multiple metrics.