Abstract:Data-driven methods have shown potential in electric-vehicle battery management tasks such as capacity estimation, but their deployment is bottlenecked by poor performance in data-limited scenarios. Sharing battery data among algorithm developers can enable accurate and generalizable data-driven models. However, an effective battery management framework that simultaneously ensures data privacy and fault tolerance is still lacking. This paper proposes a swarm battery management system that unites a decentralized swarm learning (SL) framework and credibility weight-based model merging mechanism to enhance battery capacity estimation in data-limited scenarios while ensuring data privacy and security. The effectiveness of the SL framework is validated on a dataset comprising 66 commercial LiNiCoAlO2 cells cycled under various operating conditions. Specifically, the capacity estimation performance is validated in four cases, including data-balanced, volume-biased, feature-biased, and quality-biased scenarios. Our results show that SL can enhance the estimation accuracy in all data-limited cases and achieve a similar level of accuracy with central learning where large amounts of data are available.
Abstract:Unsupervised anomaly detection in hyperspectral images (HSI), aiming to detect unknown targets from backgrounds, is challenging for earth surface monitoring. However, current studies are hindered by steep computational costs due to the high-dimensional property of HSI and dense sampling-based training paradigm, constraining their rapid deployment. Our key observation is that, during training, not all samples within the same homogeneous area are indispensable, whereas ingenious sampling can provide a powerful substitute for reducing costs. Motivated by this, we propose an Asymmetrical Consensus State Space Model (ACMamba) to significantly reduce computational costs without compromising accuracy. Specifically, we design an asymmetrical anomaly detection paradigm that utilizes region-level instances as an efficient alternative to dense pixel-level samples. In this paradigm, a low-cost Mamba-based module is introduced to discover global contextual attributes of regions that are essential for HSI reconstruction. Additionally, we develop a consensus learning strategy from the optimization perspective to simultaneously facilitate background reconstruction and anomaly compression, further alleviating the negative impact of anomaly reconstruction. Theoretical analysis and extensive experiments across eight benchmarks verify the superiority of ACMamba, demonstrating a faster speed and stronger performance over the state-of-the-art.
Abstract:Large Language Models (LLMs) demonstrate remarkable capabilities in leveraging comprehensive world knowledge and sophisticated reasoning mechanisms for recommendation tasks. However, a notable limitation lies in their inability to effectively model sparse identifiers (e.g., user and item IDs), unlike conventional collaborative filtering models (Collabs.), thus hindering LLM to learn distinctive user-item representations and creating a performance bottleneck. Prior studies indicate that integrating collaborative knowledge from Collabs. into LLMs can mitigate the above limitations and enhance their recommendation performance. Nevertheless, the significant discrepancy in knowledge distribution and semantic space between LLMs and Collab. presents substantial challenges for effective knowledge transfer. To tackle these challenges, we propose a novel framework, SeLLa-Rec, which focuses on achieving alignment between the semantic spaces of Collabs. and LLMs. This alignment fosters effective knowledge fusion, mitigating the influence of discriminative noise and facilitating the deep integration of knowledge from diverse models. Specifically, three special tokens with collaborative knowledge are embedded into the LLM's semantic space through a hybrid projection layer and integrated into task-specific prompts to guide the recommendation process. Experiments conducted on two public benchmark datasets (MovieLens-1M and Amazon Book) demonstrate that SeLLa-Rec achieves state-of-the-art performance.
Abstract:Text images are unique in their dual nature, encompassing both visual and linguistic information. The visual component encompasses structural and appearance-based features, while the linguistic dimension incorporates contextual and semantic elements. In scenarios with degraded visual quality, linguistic patterns serve as crucial supplements for comprehension, highlighting the necessity of integrating both aspects for robust scene text recognition (STR). Contemporary STR approaches often use language models or semantic reasoning modules to capture linguistic features, typically requiring large-scale annotated datasets. Self-supervised learning, which lacks annotations, presents challenges in disentangling linguistic features related to the global context. Typically, sequence contrastive learning emphasizes the alignment of local features, while masked image modeling (MIM) tends to exploit local structures to reconstruct visual patterns, resulting in limited linguistic knowledge. In this paper, we propose a Linguistics-aware Masked Image Modeling (LMIM) approach, which channels the linguistic information into the decoding process of MIM through a separate branch. Specifically, we design a linguistics alignment module to extract vision-independent features as linguistic guidance using inputs with different visual appearances. As features extend beyond mere visual structures, LMIM must consider the global context to achieve reconstruction. Extensive experiments on various benchmarks quantitatively demonstrate our state-of-the-art performance, and attention visualizations qualitatively show the simultaneous capture of both visual and linguistic information.
Abstract:Audio-driven single-image talking portrait generation plays a crucial role in virtual reality, digital human creation, and filmmaking. Existing approaches are generally categorized into keypoint-based and image-based methods. Keypoint-based methods effectively preserve character identity but struggle to capture fine facial details due to the fixed points limitation of the 3D Morphable Model. Moreover, traditional generative networks face challenges in establishing causality between audio and keypoints on limited datasets, resulting in low pose diversity. In contrast, image-based approaches produce high-quality portraits with diverse details using the diffusion network but incur identity distortion and expensive computational costs. In this work, we propose KDTalker, the first framework to combine unsupervised implicit 3D keypoint with a spatiotemporal diffusion model. Leveraging unsupervised implicit 3D keypoints, KDTalker adapts facial information densities, allowing the diffusion process to model diverse head poses and capture fine facial details flexibly. The custom-designed spatiotemporal attention mechanism ensures accurate lip synchronization, producing temporally consistent, high-quality animations while enhancing computational efficiency. Experimental results demonstrate that KDTalker achieves state-of-the-art performance regarding lip synchronization accuracy, head pose diversity, and execution efficiency.Our codes are available at https://github.com/chaolongy/KDTalker.
Abstract:Personalized federated learning is extensively utilized in scenarios characterized by data heterogeneity, facilitating more efficient and automated local training on data-owning terminals. This includes the automated selection of high-performance model parameters for upload, thereby enhancing the overall training process. However, it entails significant risks of privacy leakage. Existing studies have attempted to mitigate these risks by utilizing differential privacy. Nevertheless, these studies present two major limitations: (1) The integration of differential privacy into personalized federated learning lacks sufficient personalization, leading to the introduction of excessive noise into the model. (2) It fails to adequately control the spatial scope of model update information, resulting in a suboptimal balance between data privacy and model effectiveness in differential privacy federated learning. In this paper, we propose a differentially private personalized federated learning approach that employs dynamically sparsified client updates through reparameterization and adaptive norm(DP-pFedDSU). Reparameterization training effectively selects personalized client update information, thereby reducing the quantity of updates. This approach minimizes the introduction of noise to the greatest extent possible. Additionally, dynamic adaptive norm refers to controlling the norm space of model updates during the training process, mitigating the negative impact of clipping on the update information. These strategies substantially enhance the effective integration of differential privacy and personalized federated learning. Experimental results on EMNIST, CIFAR-10, and CIFAR-100 demonstrate that our proposed scheme achieves superior performance and is well-suited for more complex personalized federated learning scenarios.
Abstract:Role-playing language agents (RPLAs) have emerged as promising applications of large language models (LLMs). However, simulating established characters presents a challenging task for RPLAs, due to the lack of authentic character datasets and nuanced evaluation methods using such data. In this paper, we present CoSER, a collection of a high-quality dataset, open models, and an evaluation protocol towards effective RPLAs of established characters. The CoSER dataset covers 17,966 characters from 771 renowned books. It provides authentic dialogues with real-world intricacies, as well as diverse data types such as conversation setups, character experiences and internal thoughts. Drawing from acting methodology, we introduce given-circumstance acting for training and evaluating role-playing LLMs, where LLMs sequentially portray multiple characters in book scenes. Using our dataset, we develop CoSER 8B and CoSER 70B, i.e., advanced open role-playing LLMs built on LLaMA-3.1 models. Extensive experiments demonstrate the value of the CoSER dataset for RPLA training, evaluation and retrieval. Moreover, CoSER 70B exhibits state-of-the-art performance surpassing or matching GPT-4o on our evaluation and three existing benchmarks, i.e., achieving 75.80% and 93.47% accuracy on the InCharacter and LifeChoice benchmarks respectively.
Abstract:Existing visual perception systems focus on region-level segmentation in single-turn dialogues, relying on complex and explicit query instructions. Such systems cannot reason at the pixel level and comprehend dynamic user intent that changes over interaction. Our work tackles this issue by introducing a novel task, Pixel-level Reasoning Segmentation (Pixel-level RS) based on multi-turn conversations, tracking evolving user intent via multi-turn interactions for fine-grained segmentation. To establish a benchmark for this novel task, we build a Pixel-level ReasonIng Segmentation Dataset Based on Multi-Turn Conversations (PRIST), comprising 24k utterances from 8.3k multi-turn conversational scenarios with segmentation targets. Building on PRIST, we further propose MIRAS, a Multi-turn Interactive ReAsoning Segmentation framework, integrates pixel-level segmentation with robust multi-turn conversation understanding, generating pixel-grounded explanations aligned with user intent. The PRIST dataset and MIRSA framework fill the gap in pixel-level reasoning segmentation. Experimental results on the PRIST dataset demonstrate that our method outperforms current segmentation-specific baselines in terms of segmentation and LLM-based reasoning metrics. The code and data are available at: https://github.com/ccccai239/PixelRIST.
Abstract:While Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external knowledge, they still face persistent challenges in retrieval inefficiency and the inability of LLMs to filter out irrelevant information. We present ParetoRAG, an unsupervised framework that optimizes RAG systems through sentence-level refinement guided by the Pareto principle. By decomposing paragraphs into sentences and dynamically re-weighting core content while preserving contextual coherence, ParetoRAG achieves dual improvements in both retrieval precision and generation quality without requiring additional training or API resources. This framework has been empirically validated across various datasets, LLMs, and retrievers.
Abstract:This paper delves into the study of 3D point cloud reconstruction from a single image. Our objective is to develop the Consistency Diffusion Model, exploring synergistic 2D and 3D priors in the Bayesian framework to ensure superior consistency in the reconstruction process, a challenging yet critical requirement in this field. Specifically, we introduce a pioneering training framework under diffusion models that brings two key innovations. First, we convert 3D structural priors derived from the initial 3D point cloud as a bound term to increase evidence in the variational Bayesian framework, leveraging these robust intrinsic priors to tightly govern the diffusion training process and bolster consistency in reconstruction. Second, we extract and incorporate 2D priors from the single input image, projecting them onto the 3D point cloud to enrich the guidance for diffusion training. Our framework not only sidesteps potential model learning shifts that may arise from directly imposing additional constraints during training but also precisely transposes the 2D priors into the 3D domain. Extensive experimental evaluations reveal that our approach sets new benchmarks in both synthetic and real-world datasets. The code is included with the submission.