Emory University Winship Cancer Institute, Department of Radiation Oncology, Emory University
Abstract:3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
Abstract:Cone-beam CT (CBCT) is widely used in clinical radiotherapy for image-guided treatment, improving setup accuracy, adaptive planning, and motion management. However, slow gantry rotation limits performance by introducing motion artifacts, blurring, and increased dose. This work aims to develop a clinically feasible method for reconstructing high-quality CBCT volumes from consecutive limited-angle acquisitions, addressing imaging challenges in time- or dose-constrained settings. We propose a limited-angle (LA) geometry-integrated cycle-domain (LA-GICD) framework for CBCT reconstruction, comprising two denoising diffusion probabilistic models (DDPMs) connected via analytic cone-beam forward and back projectors. A Projection-DDPM completes missing projections, followed by back-projection, and an Image-DDPM refines the volume. This dual-domain design leverages complementary priors from projection and image spaces to achieve high-quality reconstructions from limited-angle (<= 90 degrees) scans. Performance was evaluated against full-angle reconstruction. Four board-certified medical physicists conducted assessments. A total of 78 planning CTs in common CBCT geometries were used for training and evaluation. The method achieved a mean absolute error of 35.5 HU, SSIM of 0.84, and PSNR of 29.8 dB, with visibly reduced artifacts and improved soft-tissue clarity. LA-GICD's geometry-aware dual-domain learning, embedded in analytic forward/backward operators, enabled artifact-free, high-contrast reconstructions from a single 90-degree scan, reducing acquisition time and dose four-fold. LA-GICD improves limited-angle CBCT reconstruction with strong data fidelity and anatomical realism. It offers a practical solution for short-arc acquisitions, enhancing CBCT use in radiotherapy by providing clinically applicable images with reduced scan time and dose for more accurate, personalized treatments.
Abstract:High-dose-rate (HDR) brachytherapy plays a critical role in the treatment of locally advanced cervical cancer but remains highly dependent on manual treatment planning expertise. The objective of this study is to develop a fully automated HDR brachytherapy planning framework that integrates reinforcement learning (RL) and dose-based optimization to generate clinically acceptable treatment plans with improved consistency and efficiency. We propose a hierarchical two-stage autoplanning framework. In the first stage, a deep Q-network (DQN)-based RL agent iteratively selects treatment planning parameters (TPPs), which control the trade-offs between target coverage and organ-at-risk (OAR) sparing. The agent's state representation includes both dose-volume histogram (DVH) metrics and current TPP values, while its reward function incorporates clinical dose objectives and safety constraints, including D90, V150, V200 for targets, and D2cc for all relevant OARs (bladder, rectum, sigmoid, small bowel, and large bowel). In the second stage, a customized Adam-based optimizer computes the corresponding dwell time distribution for the selected TPPs using a clinically informed loss function. The framework was evaluated on a cohort of patients with complex applicator geometries. The proposed framework successfully learned clinically meaningful TPP adjustments across diverse patient anatomies. For the unseen test patients, the RL-based automated planning method achieved an average score of 93.89%, outperforming the clinical plans which averaged 91.86%. These findings are notable given that score improvements were achieved while maintaining full target coverage and reducing CTV hot spots in most cases.
Abstract:Purpose: In high-dose-rate (HDR) prostate brachytherapy procedures, the pattern of needle placement solely relies on physician experience. We investigated the feasibility of using reinforcement learning (RL) to provide needle positions and dwell times based on patient anatomy during pre-planning stage. This approach would reduce procedure time and ensure consistent plan quality. Materials and Methods: We train a RL agent to adjust the position of one selected needle and all the dwell times on it to maximize a pre-defined reward function after observing the environment. After adjusting, the RL agent then moves on to the next needle, until all needles are adjusted. Multiple rounds are played by the agent until the maximum number of rounds is reached. Plan data from 11 prostate HDR boost patients (1 for training, and 10 for testing) treated in our clinic were included in this study. The dosimetric metrics and the number of used needles of RL plan were compared to those of the clinical results (ground truth). Results: On average, RL plans and clinical plans have very similar prostate coverage (Prostate V100) and Rectum D2cc (no statistical significance), while RL plans have less prostate hotspot (Prostate V150) and Urethra D20% plans with statistical significance. Moreover, RL plans use 2 less needles than clinical plan on average. Conclusion: We present the first study demonstrating the feasibility of using reinforcement learning to autonomously generate clinically practical HDR prostate brachytherapy plans. This RL-based method achieved equal or improved plan quality compared to conventional clinical approaches while requiring fewer needles. With minimal data requirements and strong generalizability, this approach has substantial potential to standardize brachytherapy planning, reduce clinical variability, and enhance patient outcomes.
Abstract:Anatomical changes during intensity-modulated proton therapy (IMPT) for head-and-neck cancer (HNC) can shift Bragg peaks, risking tumor underdosing and organ-at-risk overdosing. As a result, treatment replanning is often required to maintain clinically acceptable treatment quality. However, current manual replanning processes are resource-intensive and time-consuming. We propose a patient-specific deep reinforcement learning (DRL) framework for automated IMPT replanning, with a reward-shaping mechanism based on a $150$-point plan quality score addressing competing clinical objectives. We formulate the planning process as an RL problem where agents learn control policies to adjust optimization priorities, maximizing plan quality. Unlike population-based approaches, our framework trains personalized agents for each patient using their planning CT (Computed Tomography) and augmented anatomies simulating anatomical changes (tumor progression and regression). This patient-specific approach leverages anatomical similarities throughout treatment, enabling effective plan adaptation. We implemented two DRL algorithms, Deep Q-Network and Proximal Policy Optimization, using dose-volume histograms (DVHs) as state representations and a $22$-dimensional action space of priority adjustments. Evaluation on five HNC patients using actual replanning CT data showed both DRL agents improved initial plan scores from $120.63 \pm 21.40$ to $139.78 \pm 6.84$ (DQN) and $142.74 \pm 5.16$ (PPO), surpassing manual replans generated by a human planner ($137.20 \pm 5.58$). Clinical validation confirms that improvements translate to better tumor coverage and OAR sparing across diverse anatomical changes. This work demonstrates DRL's potential in addressing geometric and dosimetric complexities of adaptive proton therapy, offering efficient offline adaptation solutions and advancing online adaptive proton therapy.
Abstract:Radiotherapy often involves a prolonged treatment period. During this time, patients may experience organ motion due to breathing and other physiological factors. Predicting and modeling this motion before treatment is crucial for ensuring precise radiation delivery. However, existing pre-treatment organ motion prediction methods primarily rely on deformation analysis using principal component analysis (PCA), which is highly dependent on registration quality and struggles to capture periodic temporal dynamics for motion modeling.In this paper, we observe that organ motion prediction closely resembles an autoregressive process, a technique widely used in natural language processing (NLP). Autoregressive models predict the next token based on previous inputs, naturally aligning with our objective of predicting future organ motion phases. Building on this insight, we reformulate organ motion prediction as an autoregressive process to better capture patient-specific motion patterns. Specifically, we acquire 4D CT scans for each patient before treatment, with each sequence comprising multiple 3D CT phases. These phases are fed into the autoregressive model to predict future phases based on prior phase motion patterns. We evaluate our method on a real-world test set of 4D CT scans from 50 patients who underwent radiotherapy at our institution and a public dataset containing 4D CT scans from 20 patients (some with multiple scans), totaling over 1,300 3D CT phases. The performance in predicting the motion of the lung and heart surpasses existing benchmarks, demonstrating its effectiveness in capturing motion dynamics from CT images. These results highlight the potential of our method to improve pre-treatment planning in radiotherapy, enabling more precise and adaptive radiation delivery.
Abstract:Human mesh recovery (HMR) from a single image is inherently ill-posed due to depth ambiguity and occlusions. Probabilistic methods have tried to solve this by generating numerous plausible 3D human mesh predictions, but they often exhibit misalignment with 2D image observations and weak robustness to in-the-wild images. To address these issues, we propose ADHMR, a framework that Aligns a Diffusion-based HMR model in a preference optimization manner. First, we train a human mesh prediction assessment model, HMR-Scorer, capable of evaluating predictions even for in-the-wild images without 3D annotations. We then use HMR-Scorer to create a preference dataset, where each input image has a pair of winner and loser mesh predictions. This dataset is used to finetune the base model using direct preference optimization. Moreover, HMR-Scorer also helps improve existing HMR models by data cleaning, even with fewer training samples. Extensive experiments show that ADHMR outperforms current state-of-the-art methods. Code is available at: https://github.com/shenwenhao01/ADHMR.
Abstract:Purpose: Motion artifacts in magnetic resonance imaging (MRI) significantly degrade image quality and impair quantitative analysis. Conventional mitigation strategies, such as repeated acquisitions or motion tracking, are costly and workflow-intensive. This study introduces Res-MoCoDiff, an efficient denoising diffusion probabilistic model tailored for MRI motion artifact correction. Methods: Res-MoCoDiff incorporates a novel residual error shifting mechanism in the forward diffusion process, aligning the noise distribution with motion-corrupted data and enabling an efficient four-step reverse diffusion. A U-net backbone enhanced with Swin-Transformer blocks conventional attention layers, improving adaptability across resolutions. Training employs a combined l1+l2 loss, which promotes image sharpness and reduces pixel-level errors. Res-MoCoDiff was evaluated on synthetic dataset generated using a realistic motion simulation framework and on an in-vivo dataset. Comparative analyses were conducted against established methods, including CycleGAN, Pix2pix, and MT-DDPM using quantitative metrics such as peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and normalized mean squared error (NMSE). Results: The proposed method demonstrated superior performance in removing motion artifacts across all motion severity levels. Res-MoCoDiff consistently achieved the highest SSIM and the lowest NMSE values, with a PSNR of up to 41.91+-2.94 dB for minor distortions. Notably, the average sampling time was reduced to 0.37 seconds per batch of two image slices, compared with 101.74 seconds for conventional approaches.
Abstract:Creating CAD digital twins from the physical world is crucial for manufacturing, design, and simulation. However, current methods typically rely on costly 3D scanning with labor-intensive post-processing. To provide a user-friendly design process, we explore the problem of reverse engineering from unconstrained real-world CAD images that can be easily captured by users of all experiences. However, the scarcity of real-world CAD data poses challenges in directly training such models. To tackle these challenges, we propose CADCrafter, an image-to-parametric CAD model generation framework that trains solely on synthetic textureless CAD data while testing on real-world images. To bridge the significant representation disparity between images and parametric CAD models, we introduce a geometry encoder to accurately capture diverse geometric features. Moreover, the texture-invariant properties of the geometric features can also facilitate the generalization to real-world scenarios. Since compiling CAD parameter sequences into explicit CAD models is a non-differentiable process, the network training inherently lacks explicit geometric supervision. To impose geometric validity constraints, we employ direct preference optimization (DPO) to fine-tune our model with the automatic code checker feedback on CAD sequence quality. Furthermore, we collected a real-world dataset, comprised of multi-view images and corresponding CAD command sequence pairs, to evaluate our method. Experimental results demonstrate that our approach can robustly handle real unconstrained CAD images, and even generalize to unseen general objects.
Abstract:Vision-language models (VLMs) have advanced reasoning in natural scenes, but their role in medical imaging remains underexplored. Medical reasoning tasks demand robust image analysis and well-justified answers, posing challenges due to the complexity of medical images. Transparency and trustworthiness are essential for clinical adoption and regulatory compliance. We introduce Med-R1, a framework exploring reinforcement learning (RL) to enhance VLMs' generalizability and trustworthiness in medical reasoning. Leveraging the DeepSeek strategy, we employ Group Relative Policy Optimization (GRPO) to guide reasoning paths via reward signals. Unlike supervised fine-tuning (SFT), which often overfits and lacks generalization, RL fosters robust and diverse reasoning. Med-R1 is evaluated across eight medical imaging modalities: CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray Imaging. Compared to its base model, Qwen2-VL-2B, Med-R1 achieves a 29.94% accuracy improvement and outperforms Qwen2-VL-72B, which has 36 times more parameters. Testing across five question types-modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis Med-R1 demonstrates superior generalization, exceeding Qwen2-VL-2B by 32.06% and surpassing Qwen2-VL-72B in question-type generalization. These findings show that RL improves medical reasoning and enables parameter-efficient models to outperform significantly larger ones. With interpretable reasoning outputs, Med-R1 represents a promising step toward generalizable, trustworthy, and clinically viable medical VLMs.