Northeast Normal University
Abstract:To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast amd irregular shape, we propose a progressive dual priori network (PDPNet) to segment breast tumors from dynamic enhanced magnetic resonance images (DCE-MRI) acquired at different sites. The PDPNet first cropped tumor regions with a coarse-segmentation based localization module, then the breast tumor mask was progressively refined by using the weak semantic priori and cross-scale correlation prior knowledge. To validate the effectiveness of PDPNet, we compared it with several state-of-the-art methods on multi-center datasets. The results showed that, comparing against the suboptimal method, the DSC, SEN, KAPPA and HD95 of PDPNet were improved 3.63\%, 8.19\%, 5.52\%, and 3.66\% respectively. In addition, through ablations, we demonstrated that the proposed localization module can decrease the influence of normal tissues and therefore improve the generalization ability of the model. The weak semantic priors allow focusing on tumor regions to avoid missing small tumors and low-contrast tumors. The cross-scale correlation priors are beneficial for promoting the shape-aware ability for irregual tumors. Thus integrating them in a unified framework improved the multi-center breast tumor segmentation performance.
Abstract:Deep Learning has advanced Automatic Speaker Verification (ASV) in the past few years. Although it is known that deep learning-based ASV systems are vulnerable to adversarial examples in digital access, there are few studies on adversarial attacks in the context of physical access, where a replay process (i.e., over the air) is involved. An over-the-air attack involves a loudspeaker, a microphone, and a replaying environment that impacts the movement of the sound wave. Our initial experiment confirms that the replay process impacts the effectiveness of the over-the-air attack performance. This study performs an initial investigation towards utilizing a neural replay simulator to improve over-the-air adversarial attack robustness. This is achieved by using a neural waveform synthesizer to simulate the replay process when estimating the adversarial perturbations. Experiments conducted on the ASVspoof2019 dataset confirm that the neural replay simulator can considerably increase the success rates of over-the-air adversarial attacks. This raises the concern for adversarial attacks on speaker verification in physical access applications.
Abstract:Replay attack is one of the most effective and simplest voice spoofing attacks. Detecting replay attacks is challenging, according to the Automatic Speaker Verification Spoofing and Countermeasures Challenge 2021 (ASVspoof 2021), because they involve a loudspeaker, a microphone, and acoustic conditions (e.g., background noise). One obstacle to detecting replay attacks is finding robust feature representations that reflect the channel noise information added to the replayed speech. This study proposes a feature extraction approach that uses audio compression for assistance. Audio compression compresses audio to preserve content and speaker information for transmission. The missed information after decompression is expected to contain content- and speaker-independent information (e.g., channel noise added during the replay process). We conducted a comprehensive experiment with a few data augmentation techniques and 3 classifiers on the ASVspoof 2021 physical access (PA) set and confirmed the effectiveness of the proposed feature extraction approach. To the best of our knowledge, the proposed approach achieves the lowest EER at 22.71% on the ASVspoof 2021 PA evaluation set.
Abstract:It is known that deep neural networks are vulnerable to adversarial attacks. Although Automatic Speaker Verification (ASV) built on top of deep neural networks exhibits robust performance in controlled scenarios, many studies confirm that ASV is vulnerable to adversarial attacks. The lack of a standard dataset is a bottleneck for further research, especially reproducible research. In this study, we developed an open-source adversarial attack dataset for speaker verification research. As an initial step, we focused on the over-the-air attack. An over-the-air adversarial attack involves a perturbation generation algorithm, a loudspeaker, a microphone, and an acoustic environment. The variations in the recording configurations make it very challenging to reproduce previous research. The AdvSV dataset is constructed using the Voxceleb1 Verification test set as its foundation. This dataset employs representative ASV models subjected to adversarial attacks and records adversarial samples to simulate over-the-air attack settings. The scope of the dataset can be easily extended to include more types of adversarial attacks. The dataset will be released to the public under the CC-BY license. In addition, we also provide a detection baseline for reproducible research.
Abstract:Although the majority of recent autonomous driving systems concentrate on developing perception methods based on ego-vehicle sensors, there is an overlooked alternative approach that involves leveraging intelligent roadside cameras to help extend the ego-vehicle perception ability beyond the visual range. We discover that most existing monocular 3D object detectors rely on the ego-vehicle prior assumption that the optical axis of the camera is parallel to the ground. However, the roadside camera is installed on a pole with a pitched angle, which makes the existing methods not optimal for roadside scenes. In this paper, we introduce a novel framework for Roadside Monocular 3D object detection with ground-aware embeddings, named MonoGAE. Specifically, the ground plane is a stable and strong prior knowledge due to the fixed installation of cameras in roadside scenarios. In order to reduce the domain gap between the ground geometry information and high-dimensional image features, we employ a supervised training paradigm with a ground plane to predict high-dimensional ground-aware embeddings. These embeddings are subsequently integrated with image features through cross-attention mechanisms. Furthermore, to improve the detector's robustness to the divergences in cameras' installation poses, we replace the ground plane depth map with a novel pixel-level refined ground plane equation map. Our approach demonstrates a substantial performance advantage over all previous monocular 3D object detectors on widely recognized 3D detection benchmarks for roadside cameras. The code and pre-trained models will be released soon.
Abstract:While most recent autonomous driving system focuses on developing perception methods on ego-vehicle sensors, people tend to overlook an alternative approach to leverage intelligent roadside cameras to extend the perception ability beyond the visual range. We discover that the state-of-the-art vision-centric bird's eye view detection methods have inferior performances on roadside cameras. This is because these methods mainly focus on recovering the depth regarding the camera center, where the depth difference between the car and the ground quickly shrinks while the distance increases. In this paper, we propose a simple yet effective approach, dubbed BEVHeight++, to address this issue. In essence, we regress the height to the ground to achieve a distance-agnostic formulation to ease the optimization process of camera-only perception methods. By incorporating both height and depth encoding techniques, we achieve a more accurate and robust projection from 2D to BEV spaces. On popular 3D detection benchmarks of roadside cameras, our method surpasses all previous vision-centric methods by a significant margin. In terms of the ego-vehicle scenario, our BEVHeight++ possesses superior over depth-only methods. Specifically, it yields a notable improvement of +1.9% NDS and +1.1% mAP over BEVDepth when evaluated on the nuScenes validation set. Moreover, on the nuScenes test set, our method achieves substantial advancements, with an increase of +2.8% NDS and +1.7% mAP, respectively.
Abstract:In this work, we explore the influence of entropy change in deep learning systems by adding noise to the inputs/latent features. The applications in this paper focus on deep learning tasks within computer vision, but the proposed theory can be further applied to other fields. Noise is conventionally viewed as a harmful perturbation in various deep learning architectures, such as convolutional neural networks (CNNs) and vision transformers (ViTs), as well as different learning tasks like image classification and transfer learning. However, this paper aims to rethink whether the conventional proposition always holds. We demonstrate that specific noise can boost the performance of various deep architectures under certain conditions. We theoretically prove the enhancement gained from positive noise by reducing the task complexity defined by information entropy and experimentally show the significant performance gain in large image datasets, such as the ImageNet. Herein, we use the information entropy to define the complexity of the task. We categorize the noise into two types, positive noise (PN) and harmful noise (HN), based on whether the noise can help reduce the complexity of the task. Extensive experiments of CNNs and ViTs have shown performance improvements by proactively injecting positive noise, where we achieved an unprecedented top 1 accuracy of over 95% on ImageNet. Both theoretical analysis and empirical evidence have confirmed that the presence of positive noise can benefit the learning process, while the traditionally perceived harmful noise indeed impairs deep learning models. The different roles of noise offer new explanations for deep models on specific tasks and provide a new paradigm for improving model performance. Moreover, it reminds us that we can influence the performance of learning systems via information entropy change.
Abstract:Aggregating distributed energy resources in power systems significantly increases uncertainties, in particular caused by the fluctuation of renewable energy generation. This issue has driven the necessity of widely exploiting advanced predictive control techniques under uncertainty to ensure long-term economics and decarbonization. In this paper, we propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements: (i) A hybrid forecast-and-optimize sequential task, integrating deep learning-based forecasting and stochastic optimization, where these two stages are connected by the uncertainty estimation at multiple temporal resolutions; (ii) An efficient online data augmentation scheme, jointly involving model pre-training and online fine-tuning stages. In this way, the proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process, and finally to realize an optimal and robust dispatch solution. The proposed framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain. In addition, comprehensive experiments are conducted to interpret its effectiveness in the real-life scenario of smart building energy management.
Abstract:Machine Learning (ML) methods and tools have gained great success in many data, signal, image and video processing tasks, such as classification, clustering, object detection, semantic segmentation, language processing, Human-Machine interface, etc. In computer vision, image and video processing, these methods are mainly based on Neural Networks (NN) and in particular Convolutional NN (CNN), and more generally Deep NN. Inverse problems arise anywhere we have indirect measurement. As, in general, those inverse problems are ill-posed, to obtain satisfactory solutions for them needs prior information. Different regularization methods have been proposed, where the problem becomes the optimization of a criterion with a likelihood term and a regularization term. The main difficulty, however, in great dimensional real applications, remains the computational cost. Using NN, and in particular Deep Learning (DL) surrogate models and approximate computation, can become very helpful. In this work, we focus on NN and DL particularly adapted for inverse problems. We consider two cases: First the case where the forward operator is known and used as physics constraint, the second more general data driven DL methods.
Abstract:Inverse problems arise anywhere we have indirect measurement. As, in general they are ill-posed, to obtain satisfactory solutions for them needs prior knowledge. Classically, different regularization methods and Bayesian inference based methods have been proposed. As these methods need a great number of forward and backward computations, they become costly in computation, in particular, when the forward or generative models are complex and the evaluation of the likelihood becomes very costly. Using Deep Neural Network surrogate models and approximate computation can become very helpful. However, accounting for the uncertainties, we need first understand the Bayesian Deep Learning and then, we can see how we can use them for inverse problems. In this work, we focus on NN, DL and more specifically the Bayesian DL particularly adapted for inverse problems. We first give details of Bayesian DL approximate computations with exponential families, then we will see how we can use them for inverse problems. We consider two cases: First the case where the forward operator is known and used as physics constraint, the second more general data driven DL methods. keyword: Neural Network, Variational Bayesian inference, Bayesian Deep Learning (DL), Inverse problems, Physics based DL.