Saarland University, Institute of Intelligent Software, Guangzhou
Abstract:Explainable AI (XAI) is crucial for building transparent and trustworthy machine learning systems, especially in high-stakes domains. Concept Bottleneck Models (CBMs) have emerged as a promising ante-hoc approach that provides interpretable, concept-level explanations by explicitly modeling human-understandable concepts. However, existing CBMs often suffer from poor locality faithfulness, failing to spatially align concepts with meaningful image regions, which limits their interpretability and reliability. In this work, we propose SL-CBM (CBM with Semantic Locality), a novel extension that enforces locality faithfulness by generating spatially coherent saliency maps at both concept and class levels. SL-CBM integrates a 1x1 convolutional layer with a cross-attention mechanism to enhance alignment between concepts, image regions, and final predictions. Unlike prior methods, SL-CBM produces faithful saliency maps inherently tied to the model's internal reasoning, facilitating more effective debugging and intervention. Extensive experiments on image datasets demonstrate that SL-CBM substantially improves locality faithfulness, explanation quality, and intervention efficacy while maintaining competitive classification accuracy. Our ablation studies highlight the importance of contrastive and entropy-based regularization for balancing accuracy, sparsity, and faithfulness. Overall, SL-CBM bridges the gap between concept-based reasoning and spatial explainability, setting a new standard for interpretable and trustworthy concept-based models.
Abstract:An ever increasing number of high-stake decisions are made or assisted by automated systems employing brittle artificial intelligence technology. There is a substantial risk that some of these decision induce harm to people, by infringing their well-being or their fundamental human rights. The state-of-the-art in AI systems makes little effort with respect to appropriate documentation of the decision process. This obstructs the ability to trace what went into a decision, which in turn is a prerequisite to any attempt of reconstructing a responsibility chain. Specifically, such traceability is linked to a documentation that will stand up in court when determining the cause of some AI-based decision that inadvertently or intentionally violates the law. This paper takes a radical, yet practical, approach to this problem, by enforcing the documentation of each and every component that goes into the training or inference of an automated decision. As such, it presents the first running workflow supporting the generation of tamper-proof, verifiable and exhaustive traces of AI decisions. In doing so, we expand the DBOM concept into an effective running workflow leveraging confidential computing technology. We demonstrate the inner workings of the workflow in the development of an app to tell poisonous and edible mushrooms apart, meant as a playful example of high-stake decision support.
Abstract:As deep learning models are increasingly deployed in high-risk applications, robust defenses against adversarial attacks and reliable performance guarantees become paramount. Moreover, accuracy alone does not provide sufficient assurance or reliable uncertainty estimates for these models. This study advances adversarial training by leveraging principles from Conformal Prediction. Specifically, we develop an adversarial attack method, termed OPSA (OPtimal Size Attack), designed to reduce the efficiency of conformal prediction at any significance level by maximizing model uncertainty without requiring coverage guarantees. Correspondingly, we introduce OPSA-AT (Adversarial Training), a defense strategy that integrates OPSA within a novel conformal training paradigm. Experimental evaluations demonstrate that our OPSA attack method induces greater uncertainty compared to baseline approaches for various defenses. Conversely, our OPSA-AT defensive model significantly enhances robustness not only against OPSA but also other adversarial attacks, and maintains reliable prediction. Our findings highlight the effectiveness of this integrated approach for developing trustworthy and resilient deep learning models for safety-critical domains. Our code is available at https://github.com/bjbbbb/Enhancing-Adversarial-Robustness-with-Conformal-Prediction.
Abstract:Saliency maps are a popular approach for explaining classifications of (convolutional) neural networks. However, it remains an open question as to how best to evaluate salience maps, with three families of evaluation methods commonly being used: subjective user measures, objective user measures, and mathematical metrics. We examine three of the most popular saliency map approaches (viz., LIME, Grad-CAM, and Guided Backpropagation) in a between subject study (N=166) across these families of evaluation methods. We test 1) for subjective measures, if the maps differ with respect to user trust and satisfaction; 2) for objective measures, if the maps increase users' abilities and thus understanding of a model; 3) for mathematical metrics, which map achieves the best ratings across metrics; and 4) whether the mathematical metrics can be associated with objective user measures. To our knowledge, our study is the first to compare several salience maps across all these evaluation methods$-$with the finding that they do not agree in their assessment (i.e., there was no difference concerning trust and satisfaction, Grad-CAM improved users' abilities best, and Guided Backpropagation had the most favorable mathematical metrics). Additionally, we show that some mathematical metrics were associated with user understanding, although this relationship was often counterintuitive. We discuss these findings in light of general debates concerning the complementary use of user studies and mathematical metrics in the evaluation of explainable AI (XAI) approaches.
Abstract:The European AI Act is a new, legally binding instrument that will enforce certain requirements on the development and use of AI technology potentially affecting people in Europe. It can be expected that the stipulations of the Act, in turn, are going to affect the work of many software engineers, software testers, data engineers, and other professionals across the IT sector in Europe and beyond. The 113 articles, 180 recitals, and 13 annexes that make up the Act cover 144 pages. This paper aims at providing an aid for navigating the Act from the perspective of some professional in the software domain, termed "the working programmer", who feels the need to know about the stipulations of the Act.




Abstract:Neural Radiance Field (NeRF) represents a significant advancement in computer vision, offering implicit neural network-based scene representation and novel view synthesis capabilities. Its applications span diverse fields including robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, etc., some of which are considered high-risk AI applications. However, despite its widespread adoption, the robustness and security of NeRF remain largely unexplored. In this study, we contribute to this area by introducing the Illusory Poisoning Attack against Neural Radiance Fields (IPA-NeRF). This attack involves embedding a hidden backdoor view into NeRF, allowing it to produce predetermined outputs, i.e. illusory, when presented with the specified backdoor view while maintaining normal performance with standard inputs. Our attack is specifically designed to deceive users or downstream models at a particular position while ensuring that any abnormalities in NeRF remain undetectable from other viewpoints. Experimental results demonstrate the effectiveness of our Illusory Poisoning Attack, successfully presenting the desired illusory on the specified viewpoint without impacting other views. Notably, we achieve this attack by introducing small perturbations solely to the training set. The code can be found at https://github.com/jiang-wenxiang/IPA-NeRF.




Abstract:Structural health monitoring (SHM) is critical to safeguarding the safety and reliability of aerospace, civil, and mechanical infrastructure. Machine learning-based data-driven approaches have gained popularity in SHM due to advancements in sensors and computational power. However, machine learning models used in SHM are vulnerable to adversarial examples -- even small changes in input can lead to different model outputs. This paper aims to address this problem by discussing adversarial defenses in SHM. In this paper, we propose an adversarial training method for defense, which uses circle loss to optimize the distance between features in training to keep examples away from the decision boundary. Through this simple yet effective constraint, our method demonstrates substantial improvements in model robustness, surpassing existing defense mechanisms.




Abstract:Classification of 3D point clouds is a challenging machine learning (ML) task with important real-world applications in a spectrum from autonomous driving and robot-assisted surgery to earth observation from low orbit. As with other ML tasks, classification models are notoriously brittle in the presence of adversarial attacks. These are rooted in imperceptible changes to inputs with the effect that a seemingly well-trained model ends up misclassifying the input. This paper adds to the understanding of adversarial attacks by presenting Eidos, a framework providing Efficient Imperceptible aDversarial attacks on 3D pOint cloudS. Eidos supports a diverse set of imperceptibility metrics. It employs an iterative, two-step procedure to identify optimal adversarial examples, thereby enabling a runtime-imperceptibility trade-off. We provide empirical evidence relative to several popular 3D point cloud classification models and several established 3D attack methods, showing Eidos' superiority with respect to efficiency as well as imperceptibility.
Abstract:State space models (SSMs) with selection mechanisms and hardware-aware architectures, namely Mamba, have recently demonstrated significant promise in long-sequence modeling. Since the self-attention mechanism in transformers has quadratic complexity with image size and increasing computational demands, the researchers are now exploring how to adapt Mamba for computer vision tasks. This paper is the first comprehensive survey aiming to provide an in-depth analysis of Mamba models in the field of computer vision. It begins by exploring the foundational concepts contributing to Mamba's success, including the state space model framework, selection mechanisms, and hardware-aware design. Next, we review these vision mamba models by categorizing them into foundational ones and enhancing them with techniques such as convolution, recurrence, and attention to improve their sophistication. We further delve into the widespread applications of Mamba in vision tasks, which include their use as a backbone in various levels of vision processing. This encompasses general visual tasks, Medical visual tasks (e.g., 2D / 3D segmentation, classification, and image registration, etc.), and Remote Sensing visual tasks. We specially introduce general visual tasks from two levels: High/Mid-level vision (e.g., Object detection, Segmentation, Video classification, etc.) and Low-level vision (e.g., Image super-resolution, Image restoration, Visual generation, etc.). We hope this endeavor will spark additional interest within the community to address current challenges and further apply Mamba models in computer vision.




Abstract:This paper studies interpretability of convolutional networks by means of saliency maps. Most approaches based on Class Activation Maps (CAM) combine information from fully connected layers and gradient through variants of backpropagation. However, it is well understood that gradients are noisy and alternatives like guided backpropagation have been proposed to obtain better visualization at inference. In this work, we present a novel training approach to improve the quality of gradients for interpretability. In particular, we introduce a regularization loss such that the gradient with respect to the input image obtained by standard backpropagation is similar to the gradient obtained by guided backpropagation. We find that the resulting gradient is qualitatively less noisy and improves quantitatively the interpretability properties of different networks, using several interpretability methods.