A novel over-the-air computation (AirComp) framework, empowered by the incorporation of movable antennas (MAs), is proposed to significantly enhance computation accuracy. Within this framework, the joint optimization of transmit power control, antenna positioning, and receive combining is investigated. An efficient method is proposed to tackle the problem of computation mean-squared error (MSE) minimization, capitalizing on the approach of alternating optimization. Numerical results are provided to substantiate the superior MSE performance of the proposed framework, which establish its clear advantage over benchmark systems employing conventional fixed-position antennas (FPAs).
A novel multiuser communication system with movable antennas (MAs) is proposed, where the antenna position optimization is exploited to enhance the downlink sum-rate. The joint optimization of the transmit beamforming vector and transmit MA positions is studied for a multiuser multiple-input single-input system. An efficient algorithm is proposed to tackle the formulated non-convex problem via capitalizing on fractional programming, alternating optimization, and gradient descent methods. To strike a better performance-complexity trade-off, a zero-forcing beamforming-based design is also proposed as an alternative. Numerical investigations are presented to verify the efficiency of the proposed algorithms and their superior performance compared with the benchmark relying on conventional fixed-position antennas (FPAs).
The distributed data analytic system -- Spark is a common choice for processing massive volumes of heterogeneous data, while it is challenging to tune its parameters to achieve high performance. Recent studies try to employ auto-tuning techniques to solve this problem but suffer from three issues: limited functionality, high overhead, and inefficient search. In this paper, we present a general and efficient Spark tuning framework that can deal with the three issues simultaneously. First, we introduce a generalized tuning formulation, which can support multiple tuning goals and constraints conveniently, and a Bayesian optimization (BO) based solution to solve this generalized optimization problem. Second, to avoid high overhead from additional offline evaluations in existing methods, we propose to tune parameters along with the actual periodic executions of each job (i.e., online evaluations). To ensure safety during online job executions, we design a safe configuration acquisition method that models the safe region. Finally, three innovative techniques are leveraged to further accelerate the search process: adaptive sub-space generation, approximate gradient descent, and meta-learning method. We have implemented this framework as an independent cloud service, and applied it to the data platform in Tencent. The empirical results on both public benchmarks and large-scale production tasks demonstrate its superiority in terms of practicality, generality, and efficiency. Notably, this service saves an average of 57.00% memory cost and 34.93% CPU cost on 25K in-production tasks within 20 iterations, respectively.
Social networks exhibit a complex graph-like structure due to the uncertainty surrounding potential collaborations among participants. Machine learning algorithms possess generic outstanding performance in multiple real-world prediction tasks. However, whether machine learning algorithms outperform specific algorithms designed for graph link prediction remains unknown to us. To address this issue, the Adamic-Adar Index (AAI), Jaccard Coefficient (JC) and common neighbour centrality (CNC) as representatives of graph-specific algorithms were applied to predict potential collaborations, utilizing data from volunteer activities during the Covid-19 pandemic in Shenzhen city, along with the classical machine learning algorithms such as random forest, support vector machine, and gradient boosting as single predictors and components of ensemble learning. This paper introduces that the AAI algorithm outperformed the traditional JC and CNC, and other machine learning algorithms in analyzing graph node attributes for this task.
As AI-generated content (AIGC) thrives, Deepfakes have expanded from single-modality falsification to cross-modal fake content creation, where either audio or visual components can be manipulated. While using two unimodal detectors can detect audio-visual deepfakes, cross-modal forgery clues could be overlooked. Existing multimodal deepfake detection methods typically establish correspondence between the audio and visual modalities for binary real/fake classification, and require the co-occurrence of both modalities. However, in real-world multi-modal applications, missing modality scenarios may occur where either modality is unavailable. In such cases, audio-visual detection methods are less practical than two independent unimodal methods. Consequently, the detector can not always obtain the number or type of manipulated modalities beforehand, necessitating a fake-modality-agnostic audio-visual detector. In this work, we propose a unified fake-modality-agnostic scenarios framework that enables the detection of multimodal deepfakes and handles missing modalities cases, no matter the manipulation hidden in audio, video, or even cross-modal forms. To enhance the modeling of cross-modal forgery clues, we choose audio-visual speech recognition (AVSR) as a preceding task, which effectively extracts speech correlation across modalities, which is difficult for deepfakes to reproduce. Additionally, we propose a dual-label detection approach that follows the structure of AVSR to support the independent detection of each modality. Extensive experiments show that our scheme not only outperforms other state-of-the-art binary detection methods across all three audio-visual datasets but also achieves satisfying performance on detection modality-agnostic audio/video fakes. Moreover, it even surpasses the joint use of two unimodal methods in the presence of missing modality cases.
We propose a novel machine learning framework for solving optimization problems governed by large-scale partial differential equations (PDEs) with high-dimensional random parameters. Such optimization under uncertainty (OUU) problems may be computational prohibitive using classical methods, particularly when a large number of samples is needed to evaluate risk measures at every iteration of an optimization algorithm, where each sample requires the solution of an expensive-to-solve PDE. To address this challenge, we propose a new neural operator approximation of the PDE solution operator that has the combined merits of (1) accurate approximation of not only the map from the joint inputs of random parameters and optimization variables to the PDE state, but also its derivative with respect to the optimization variables, (2) efficient construction of the neural network using reduced basis architectures that are scalable to high-dimensional OUU problems, and (3) requiring only a limited number of training data to achieve high accuracy for both the PDE solution and the OUU solution. We refer to such neural operators as multi-input reduced basis derivative informed neural operators (MR-DINOs). We demonstrate the accuracy and efficiency our approach through several numerical experiments, i.e. the risk-averse control of a semilinear elliptic PDE and the steady state Navier--Stokes equations in two and three spatial dimensions, each involving random field inputs. Across the examples, MR-DINOs offer $10^{3}$--$10^{7} \times$ reductions in execution time, and are able to produce OUU solutions of comparable accuracies to those from standard PDE based solutions while being over $10 \times$ more cost-efficient after factoring in the cost of construction.
In-context learning is the ability of a pretrained model to adapt to novel and diverse downstream tasks by conditioning on prompt examples, without optimizing any parameters. While large language models have demonstrated this ability, how in-context learning could be performed over graphs is unexplored. In this paper, we develop \textbf{Pr}etraining \textbf{O}ver \textbf{D}iverse \textbf{I}n-Context \textbf{G}raph S\textbf{y}stems (PRODIGY), the first pretraining framework that enables in-context learning over graphs. The key idea of our framework is to formulate in-context learning over graphs with a novel \emph{prompt graph} representation, which connects prompt examples and queries. We then propose a graph neural network architecture over the prompt graph and a corresponding family of in-context pretraining objectives. With PRODIGY, the pretrained model can directly perform novel downstream classification tasks on unseen graphs via in-context learning. We provide empirical evidence of the effectiveness of our framework by showcasing its strong in-context learning performance on tasks involving citation networks and knowledge graphs. Our approach outperforms the in-context learning accuracy of contrastive pretraining baselines with hard-coded adaptation by 18\% on average across all setups. Moreover, it also outperforms standard finetuning with limited data by 33\% on average with in-context learning.
The orthogonal time frequency space (OTFS) modulation as a promising signal representation attracts growingcinterest for integrated sensing and communication (ISAC), yet its merits over orthogonal frequency division multiplexing (OFDM) remain controversial. This paper devotes to a comprehensive comparison of OTFS and OFDM for sensing from the perspective of Cramer-Rao lower bounds (CRLB) analysis. To this end, we develop the cyclic prefix (CP)-Free and CP-added model for OFDM, while for OTFS, we consider the Zak transform based and the Two-Step conversion based models, respectively. Then we rephrase these four models into a unified matrix format to derive the CRLB of the delays and doppler shifts for multipath scenario. Numerical results demonstrate the superiority of OTFS modulation for sensing, and the effect of physical parameters for performance achievement.
Vertical federated learning (VFL) is a cloud-edge collaboration paradigm that enables edge nodes, comprising resource-constrained Internet of Things (IoT) devices, to cooperatively train artificial intelligence (AI) models while retaining their data locally. This paradigm facilitates improved privacy and security for edges and IoT devices, making VFL an essential component of Artificial Intelligence of Things (AIoT) systems. Nevertheless, the partitioned structure of VFL can be exploited by adversaries to inject a backdoor, enabling them to manipulate the VFL predictions. In this paper, we aim to investigate the vulnerability of VFL in the context of binary classification tasks. To this end, we define a threat model for backdoor attacks in VFL and introduce a universal adversarial backdoor (UAB) attack to poison the predictions of VFL. The UAB attack, consisting of universal trigger generation and clean-label backdoor injection, is incorporated during the VFL training at specific iterations. This is achieved by alternately optimizing the universal trigger and model parameters of VFL sub-problems. Our work distinguishes itself from existing studies on designing backdoor attacks for VFL, as those require the knowledge of auxiliary information not accessible within the split VFL architecture. In contrast, our approach does not necessitate any additional data to execute the attack. On the LendingClub and Zhongyuan datasets, our approach surpasses existing state-of-the-art methods, achieving up to 100\% backdoor task performance while maintaining the main task performance. Our results in this paper make a major advance to revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure AIoT.
We introduce a new task, novel view synthesis for LiDAR sensors. While traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views, they fall short in producing accurate and realistic LiDAR patterns, because the renderers they rely on exploit game engines, which are not differentiable. We address this by formulating, to the best of our knowledge, the first differentiable LiDAR renderer, and propose an end-to-end framework, LiDAR-NeRF, leveraging a neural radiance field (NeRF) to enable jointly learning the geometry and the attributes of 3D points. To evaluate the effectiveness of our approach, we establish an object-centric multi-view LiDAR dataset, dubbed NeRF-MVL. It contains observations of objects from 9 categories seen from 360-degree viewpoints captured with multiple LiDAR sensors. Our extensive experiments on the scene-level KITTI-360 dataset, and on our object-level NeRF-MVL show that our LiDAR- NeRF surpasses the model-based algorithms significantly.