Northeast Normal University
Abstract:Automatic Speaker Verification (ASV) systems can be used for voice-enabled applications for identity verification. However, recent studies have exposed these systems' vulnerabilities to both over-the-line (OTL) and over-the-air (OTA) adversarial attacks. Although various detection methods have been proposed to counter these threats, they have not been thoroughly tested due to the lack of a comprehensive data set. To address this gap, we developed the AdvSV 2.0 dataset, which contains 628k samples with a total duration of 800 hours. This dataset incorporates classical adversarial attack algorithms, ASV systems, and encompasses both OTL and OTA scenarios. Furthermore, we introduce a novel adversarial attack method based on a Neural Replay Simulator (NRS), which enhances the potency of adversarial OTA attacks, thereby presenting a greater threat to ASV systems. To defend against these attacks, we propose CODA-OCC, a contrastive learning approach within the one-class classification framework. Experimental results show that CODA-OCC achieves an EER of 11.2% and an AUC of 0.95 on the AdvSV 2.0 dataset, outperforming several state-of-the-art detection methods.
Abstract:With the rapid development of deepfake technology, simply making a binary judgment of true or false on audio is no longer sufficient to meet practical needs. Accurately determining the specific deepfake method has become crucial. This paper introduces the Audio Deepfake Verification (ADV) task, effectively addressing the limitations of existing deepfake source tracing methods in closed-set scenarios, aiming to achieve open-set deepfake source tracing. Meanwhile, the Audity dual-branch architecture is proposed, extracting deepfake features from two dimensions: audio structure and generation artifacts. Experimental results show that the dual-branch Audity architecture outperforms any single-branch configuration, and it can simultaneously achieve excellent performance in both deepfake detection and verification tasks.
Abstract:Neural Collaborative Filtering models are widely used in recommender systems but are typically trained under static settings, assuming fixed data distributions. This limits their applicability in dynamic environments where user preferences evolve. Incremental learning offers a promising solution, yet conventional methods from computer vision or NLP face challenges in recommendation tasks due to data sparsity and distinct task paradigms. Existing approaches for neural recommenders remain limited and often lack generalizability. To address this, we propose MEGG, Replay Samples with Maximally Extreme GGscore, an experience replay based incremental learning framework. MEGG introduces GGscore, a novel metric that quantifies sample influence, enabling the selective replay of highly influential samples to mitigate catastrophic forgetting. Being model-agnostic, MEGG integrates seamlessly across architectures and frameworks. Experiments on three neural models and four benchmark datasets show superior performance over state-of-the-art baselines, with strong scalability, efficiency, and robustness. Implementation will be released publicly upon acceptance.
Abstract:In recent years, large language models (LLMs) have excelled in natural language processing tasks but face significant challenges in complex reasoning tasks such as mathematical reasoning and code generation. To address these limitations, we propose KG-Augmented Executable Chain-of-Thought (KGA-ECoT), a novel framework that enhances code generation through knowledge graphs and improves mathematical reasoning via executable code. KGA-ECoT decomposes problems into a Structured Task Graph, leverages efficient GraphRAG for precise knowledge retrieval from mathematical libraries, and generates verifiable code to ensure computational accuracy. Evaluations on multiple mathematical reasoning benchmarks demonstrate that KGA-ECoT significantly outperforms existing prompting methods, achieving absolute accuracy improvements ranging from several to over ten percentage points. Further analysis confirms the critical roles of GraphRAG in enhancing code quality and external code execution in ensuring precision. These findings collectively establish KGA-ECoT as a robust and highly generalizable framework for complex mathematical reasoning tasks.
Abstract:We consider fronthaul-limited generalized zeroforcing-based cell-free massive multiple-input multiple-output (CF-mMIMO) systems with multiple-antenna users and multipleantenna access points (APs) relying on both cooperative beamforming (CB) and user-centric (UC) clustering. The proposed framework is very general and can be degenerated into different special cases, such as pure CB/pure UC clustering, or fully centralized CB/fully distributed beamforming. We comprehensively analyze the spectral efficiency (SE) performance of the system wherein the users use the minimum mean-squared errorbased successive interference cancellation (MMSE-SIC) scheme to detect the desired signals. Specifically, we formulate an optimization problem for the user association and power control for maximizing the sum SE. The formulated problem is under per-AP transmit power and fronthaul constraints, and is based on only long-term channel state information (CSI). The challenging formulated problem is transformed into tractable form and a novel algorithm is proposed to solve it using minorization maximization (MM) technique. We analyze the trade-offs provided by the CF-mMIMO system with different number of CB clusters, hence highlighting the importance of the appropriate choice of CB design for different system setups. Numerical results show that for the centralized CB, the proposed power optimization provides nearly 59% improvement in the average sum SE over the heuristic approach, and 312% improvement, when the distributed beamforming is employed.
Abstract:Post-training model quantization is a widely adopted technique for reducing the memory and computational costs of large language models (LLMs). However, most existing methods rely on uniform or heuristic bitwidth assignments, failing to account for the nonuniform sensitivity of weights to quantization noise. In this paper, we propose a novel framework for allocating quantization bitwidths based on sensitivity metrics derived from a Hessian proxy. We make key assumptions, which allow the layer/component-wise loss function to be expressed as an explicit function of the bitwidths. This enables a neat formulation of the bit allocation problem as a convex optimization task, whose closed-form solution adapts precision across weights to minimize the layer-wise quantization loss. Inspecting the solution provides several insights (such as the equal-loss structure), which are then exploited to design the proposed \textbf{BAQ} (Bit Allocation Quantization) algorithm. The proposed algorithm achieves a good trade-off between loss minimization and complexity and allows BAQ to be integrated into standard quantization pipelines with minimal overhead. Experimental results show that BAQ consistently outperforms GPTQ, achieving up to 56$\times$ lower perplexity at the same bitwidth on large language models ranging from 125M to 30B parameters. Leveraging our analytical results derived from solving the optimal bit allocation problem, we also provide a theoretical explanation for the observed gains. All codes of this paper are available at https://github.com/CSU-ModelCompression/BAQ.
Abstract:Radio maps reflect the spatial distribution of signal strength and are essential for applications like smart cities, IoT, and wireless network planning. However, reconstructing accurate radio maps from sparse measurements remains challenging. Traditional interpolation and inpainting methods lack environmental awareness, while many deep learning approaches depend on detailed scene data, limiting generalization. To address this, we propose MARS, a Multi-scale Aware Radiomap Super-resolution method that combines CNNs and Transformers with multi-scale feature fusion and residual connections. MARS focuses on both global and local feature extraction, enhancing feature representation across different receptive fields and improving reconstruction accuracy. Experiments across different scenes and antenna locations show that MARS outperforms baseline models in both MSE and SSIM, while maintaining low computational cost, demonstrating strong practical potential.
Abstract:3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where conditional alpha-blending dominates the time cost in the rendering pipeline. This paper proposes TC-GS, an algorithm-independent universal module that expands Tensor Core (TCU) applicability for 3DGS, leading to substantial speedups and seamless integration into existing 3DGS optimization frameworks. The key innovation lies in mapping alpha computation to matrix multiplication, fully utilizing otherwise idle TCUs in existing 3DGS implementations. TC-GS provides plug-and-play acceleration for existing top-tier acceleration algorithms tightly coupled with rendering pipeline designs, like Gaussian compression and redundancy elimination algorithms. Additionally, we introduce a global-to-local coordinate transformation to mitigate rounding errors from quadratic terms of pixel coordinates caused by Tensor Core half-precision computation. Extensive experiments demonstrate that our method maintains rendering quality while providing an additional 2.18x speedup over existing Gaussian acceleration algorithms, thus reaching up to a total 5.6x acceleration. The code is currently available at anonymous \href{https://github.com/TensorCore3DGS/3DGSTensorCore}
Abstract:Safety is a long-standing and the final pursuit in the development of autonomous driving systems, with a significant portion of safety challenge arising from perception. How to effectively evaluate the safety as well as the reliability of perception algorithms is becoming an emerging issue. Despite its critical importance, existing perception methods exhibit a limitation in their robustness, primarily due to the use of benchmarks are entierly simulated, which fail to align predicted results with actual outcomes, particularly under extreme weather conditions and sensor anomalies that are prevalent in real-world scenarios. To fill this gap, in this study, we propose a Sim-to-Real Evaluation Benchmark for Autonomous Driving (S2R-Bench). We collect diverse sensor anomaly data under various road conditions to evaluate the robustness of autonomous driving perception methods in a comprehensive and realistic manner. This is the first corruption robustness benchmark based on real-world scenarios, encompassing various road conditions, weather conditions, lighting intensities, and time periods. By comparing real-world data with simulated data, we demonstrate the reliability and practical significance of the collected data for real-world applications. We hope that this dataset will advance future research and contribute to the development of more robust perception models for autonomous driving. This dataset is released on https://github.com/adept-thu/S2R-Bench.
Abstract:With the rapid advancement of unmanned aerial vehicles (UAVs) and missile technologies, perimeter-defense game between attackers and defenders for the protection of critical regions have become increasingly complex and strategically significant across a wide range of domains. However, existing studies predominantly focus on small-scale, simplified two-dimensional scenarios, often overlooking realistic environmental perturbations, motion dynamics, and inherent heterogeneity--factors that pose substantial challenges to real-world applicability. To bridge this gap, we investigate large-scale heterogeneous perimeter-defense game in a three-dimensional setting, incorporating realistic elements such as motion dynamics and wind fields. We derive the Nash equilibrium strategies for both attackers and defenders, characterize the victory regions, and validate our theoretical findings through extensive simulations. To tackle large-scale heterogeneous control challenges in defense strategies, we propose an Embedded Mean-Field Actor-Critic (EMFAC) framework. EMFAC leverages representation learning to enable high-level action aggregation in a mean-field manner, supporting scalable coordination among defenders. Furthermore, we introduce a lightweight agent-level attention mechanism based on reward representation, which selectively filters observations and mean-field information to enhance decision-making efficiency and accelerate convergence in large-scale tasks. Extensive simulations across varying scales demonstrate the effectiveness and adaptability of EMFAC, which outperforms established baselines in both convergence speed and overall performance. To further validate practicality, we test EMFAC in small-scale real-world experiments and conduct detailed analyses, offering deeper insights into the framework's effectiveness in complex scenarios.