Abstract:Diffusion-based image compression has demonstrated impressive perceptual performance. However, it suffers from two critical drawbacks: (1) excessive decoding latency due to multi-step sampling, and (2) poor fidelity resulting from over-reliance on generative priors. To address these issues, we propose SODEC, a novel single-step diffusion image compression model. We argue that in image compression, a sufficiently informative latent renders multi-step refinement unnecessary. Based on this insight, we leverage a pre-trained VAE-based model to produce latents with rich information, and replace the iterative denoising process with a single-step decoding. Meanwhile, to improve fidelity, we introduce the fidelity guidance module, encouraging output that is faithful to the original image. Furthermore, we design the rate annealing training strategy to enable effective training under extremely low bitrates. Extensive experiments show that SODEC significantly outperforms existing methods, achieving superior rate-distortion-perception performance. Moreover, compared to previous diffusion-based compression models, SODEC improves decoding speed by more than 20$\times$. Code is released at: https://github.com/zhengchen1999/SODEC.
Abstract:Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.
Abstract:This paper introduces symmetric divergences to behavior regularization policy optimization (BRPO) to establish a novel offline RL framework. Existing methods focus on asymmetric divergences such as KL to obtain analytic regularized policies and a practical minimization objective. We show that symmetric divergences do not permit an analytic policy as regularization and can incur numerical issues as loss. We tackle these challenges by the Taylor series of $f$-divergence. Specifically, we prove that an analytic policy can be obtained with a finite series. For loss, we observe that symmetric divergences can be decomposed into an asymmetry and a conditional symmetry term, Taylor-expanding the latter alleviates numerical issues. Summing together, we propose Symmetric $f$ Actor-Critic (S$f$-AC), the first practical BRPO algorithm with symmetric divergences. Experimental results on distribution approximation and MuJoCo verify that S$f$-AC performs competitively.
Abstract:In this paper, we address the average consensus problem of multi-agent systems over wireless networks. We propose a distributed average consensus algorithm by invoking the concept of over-the-air aggregation, which exploits the signal superposition property of wireless multiple-access channels. The proposed algorithm deploys a modified version of the well-known Ratio Consensus algorithm with an additional normalization step for compensating for the arbitrary channel coefficients. We show that, when the noise level at the receivers is negligible, the algorithm converges asymptotically to the average for time-invariant and time-varying channels. Numerical simulations corroborate the validity of our results.
Abstract:Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
Abstract:Image demoir\'eing remains a challenging task due to the complex interplay between texture corruption and color distortions caused by moir\'e patterns. Existing methods, especially those relying on direct image-to-image restoration, often fail to disentangle these intertwined artifacts effectively. While wavelet-based frequency-aware approaches offer a promising direction, their potential remains underexplored. In this paper, we present Freqformer, a Transformer-based framework specifically designed for image demoir\'eing through targeted frequency separation. Our method performs an effective frequency decomposition that explicitly splits moir\'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions, which are then handled by a dual-branch architecture tailored to their distinct characteristics. We further propose a learnable Frequency Composition Transform (FCT) module to adaptively fuse the frequency-specific outputs, enabling consistent and high-fidelity reconstruction. To better aggregate the spatial dependencies and the inter-channel complementary information, we introduce a Spatial-Aware Channel Attention (SA-CA) module that refines moir\'e-sensitive regions without incurring high computational cost. Extensive experiments on various demoir\'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size. The code is publicly available at https://github.com/xyLiu339/Freqformer.
Abstract:Face restoration has achieved remarkable advancements through the years of development. However, ensuring that restored facial images exhibit high fidelity, preserve authentic features, and avoid introducing artifacts or biases remains a significant challenge. This highlights the need for models that are more "honest" in their reconstruction from low-quality inputs, accurately reflecting original characteristics. In this work, we propose HonestFace, a novel approach designed to restore faces with a strong emphasis on such honesty, particularly concerning identity consistency and texture realism. To achieve this, HonestFace incorporates several key components. First, we propose an identity embedder to effectively capture and preserve crucial identity features from both the low-quality input and multiple reference faces. Second, a masked face alignment method is presented to enhance fine-grained details and textural authenticity, thereby preventing the generation of patterned or overly synthetic textures and improving overall clarity. Furthermore, we present a new landmark-based evaluation metric. Based on affine transformation principles, this metric improves the accuracy compared to conventional L2 distance calculations for facial feature alignment. Leveraging these contributions within a one-step diffusion model framework, HonestFace delivers exceptional restoration results in terms of facial fidelity and realism. Extensive experiments demonstrate that our approach surpasses existing state-of-the-art methods, achieving superior performance in both visual quality and quantitative assessments. The code and pre-trained models will be made publicly available at https://github.com/jkwang28/HonestFace .
Abstract:Pretrained latent diffusion models have shown strong potential for lossy image compression, owing to their powerful generative priors. Most existing diffusion-based methods reconstruct images by iteratively denoising from random noise, guided by compressed latent representations. While these approaches have achieved high reconstruction quality, their multi-step sampling process incurs substantial computational overhead. Moreover, they typically require training separate models for different compression bit-rates, leading to significant training and storage costs. To address these challenges, we propose a one-step diffusion codec across multiple bit-rates. termed OSCAR. Specifically, our method views compressed latents as noisy variants of the original latents, where the level of distortion depends on the bit-rate. This perspective allows them to be modeled as intermediate states along a diffusion trajectory. By establishing a mapping from the compression bit-rate to a pseudo diffusion timestep, we condition a single generative model to support reconstructions at multiple bit-rates. Meanwhile, we argue that the compressed latents retain rich structural information, thereby making one-step denoising feasible. Thus, OSCAR replaces iterative sampling with a single denoising pass, significantly improving inference efficiency. Extensive experiments demonstrate that OSCAR achieves superior performance in both quantitative and visual quality metrics. The code and models will be released at https://github.com/jp-guo/OSCAR.
Abstract:Diffusion models have demonstrated promising performance in real-world video super-resolution (VSR). However, the dozens of sampling steps they require, make inference extremely slow. Sampling acceleration techniques, particularly single-step, provide a potential solution. Nonetheless, achieving one step in VSR remains challenging, due to the high training overhead on video data and stringent fidelity demands. To tackle the above issues, we propose DOVE, an efficient one-step diffusion model for real-world VSR. DOVE is obtained by fine-tuning a pretrained video diffusion model (*i.e.*, CogVideoX). To effectively train DOVE, we introduce the latent-pixel training strategy. The strategy employs a two-stage scheme to gradually adapt the model to the video super-resolution task. Meanwhile, we design a video processing pipeline to construct a high-quality dataset tailored for VSR, termed HQ-VSR. Fine-tuning on this dataset further enhances the restoration capability of DOVE. Extensive experiments show that DOVE exhibits comparable or superior performance to multi-step diffusion-based VSR methods. It also offers outstanding inference efficiency, achieving up to a **28$\times$** speed-up over existing methods such as MGLD-VSR. Code is available at: https://github.com/zhengchen1999/DOVE.
Abstract:Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.