Recent studies have demonstrated the great potential of Large Language Models (LLMs) serving as zero-shot relevance rankers. The typical approach involves making comparisons between pairs or lists of documents. Although effective, these listwise and pairwise methods are not efficient and also heavily rely on intricate prompt engineering. To tackle this problem, we introduce a novel instruction distillation method. The key idea is to distill the pairwise ranking ability of open-sourced LLMs to a simpler but more efficient pointwise ranking. Specifically, given the same LLM, we first rank documents using the effective pairwise approach with complex instructions, and then distill the teacher predictions to the pointwise approach with simpler instructions. Evaluation results on the BEIR, TREC, and ReDial datasets demonstrate that instruction distillation can improve efficiency by 10 to 100x and also enhance the ranking performance of LLMs. Furthermore, our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods. The code to reproduce our results is available at www.github.com/sunnweiwei/RankGPT.
This work centers on the communication aspects of decentralized learning over wireless networks, using consensus-based decentralized stochastic gradient descent (D-SGD). Considering the actual communication cost or delay caused by in-network information exchange in an iterative process, our goal is to achieve fast convergence of the algorithm measured by improvement per transmission slot. We propose BASS, an efficient communication framework for D-SGD over wireless networks with broadcast transmission and probabilistic subgraph sampling. In each iteration, we activate multiple subsets of non-interfering nodes to broadcast model updates to their neighbors. These subsets are randomly activated over time, with probabilities reflecting their importance in network connectivity and subject to a communication cost constraint (e.g., the average number of transmission slots per iteration). During the consensus update step, only bi-directional links are effectively preserved to maintain communication symmetry. In comparison to existing link-based scheduling methods, the inherent broadcasting nature of wireless channels offers intrinsic advantages in speeding up convergence of decentralized learning by creating more communicated links with the same number of transmission slots.
Mapless navigation has emerged as a promising approach for enabling autonomous robots to navigate in environments where pre-existing maps may be inaccurate, outdated, or unavailable. In this work, we propose an image-based local representation of the environment immediately around a robot to parse navigability. We further develop a local planning and control framework, a Pareto-optimal mapless visual navigator (POVNav), to use this representation and enable autonomous navigation in various challenging and real-world environments. In POVNav, we choose a Pareto-optimal sub-goal in the image by evaluating all the navigable pixels, finding a safe visual path, and generating actions to follow the path using visual servo control. In addition to providing collision-free motion, our approach enables selective navigation behavior, such as restricting navigation to select terrain types, by only changing the navigability definition in the local representation. The ability of POVNav to navigate a robot to the goal using only a monocular camera without relying on a map makes it computationally light and easy to implement on various robotic platforms. Real-world experiments in diverse challenging environments, ranging from structured indoor environments to unstructured outdoor environments such as forest trails and roads after a heavy snowfall, using various image segmentation techniques demonstrate the remarkable efficacy of our proposed framework.
Over-the-Air (OtA) Federated Learning (FL) refers to an FL system where multiple agents apply OtA computation for transmitting model updates to a common edge server. Two important features of OtA computation, namely linear processing and signal-level superposition, motivate the use of linear compression with compressed sensing (CS) methods to reduce the number of data samples transmitted over the channel. The previous works on applying CS methods in OtA FL have primarily assumed that the original model update vectors are sparse, or they have been sparsified before compression. However, it is unclear whether linear compression with CS-based reconstruction is more effective than directly sending the non-zero elements in the sparsified update vectors, under the same total power constraint. In this study, we examine and compare several communication designs with or without sparsification. Our findings demonstrate that sparsification before compression is not necessary. Alternatively, sparsification without linear compression can also achieve better performance than the commonly considered setup that combines both.
Recent advancements in instructing Large Language Models (LLMs) to utilize external tools and execute multi-step plans have significantly enhanced their ability to solve intricate tasks, ranging from mathematical problems to creative writing. Yet, there remains a notable gap in studying the capacity of LLMs in responding to personalized queries such as a recommendation request. To bridge this gap, we have designed an LLM-powered autonomous recommender agent, RecMind, which is capable of providing precise personalized recommendations through careful planning, utilizing tools for obtaining external knowledge, and leveraging individual data. We propose a novel algorithm, Self-Inspiring, to improve the planning ability of the LLM agent. At each intermediate planning step, the LLM 'self-inspires' to consider all previously explored states to plan for next step. This mechanism greatly improves the model's ability to comprehend and utilize historical planning information for recommendation. We evaluate RecMind's performance in various recommendation scenarios, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization. Our experiment shows that RecMind outperforms existing zero/few-shot LLM-based recommendation methods in different recommendation tasks and achieves competitive performance to a recent model P5, which requires fully pre-train for the recommendation tasks.
Precision medicine fundamentally aims to establish causality between dysregulated biochemical mechanisms and cancer subtypes. Omics-based cancer subtyping has emerged as a revolutionary approach, as different level of omics records the biochemical products of multistep processes in cancers. This paper focuses on fully exploiting the potential of multi-omics data to improve cancer subtyping outcomes, and hence developed MoCLIM, a representation learning framework. MoCLIM independently extracts the informative features from distinct omics modalities. Using a unified representation informed by contrastive learning of different omics modalities, we can well-cluster the subtypes, given cancer, into a lower latent space. This contrast can be interpreted as a projection of inter-omics inference observed in biological networks. Experimental results on six cancer datasets demonstrate that our approach significantly improves data fit and subtyping performance in fewer high-dimensional cancer instances. Moreover, our framework incorporates various medical evaluations as the final component, providing high interpretability in medical analysis.
Transformer has recently gained considerable popularity in low-level vision tasks, including image super-resolution (SR). These networks utilize self-attention along different dimensions, spatial or channel, and achieve impressive performance. This inspires us to combine the two dimensions in Transformer for a more powerful representation capability. Based on the above idea, we propose a novel Transformer model, Dual Aggregation Transformer (DAT), for image SR. Our DAT aggregates features across spatial and channel dimensions, in the inter-block and intra-block dual manner. Specifically, we alternately apply spatial and channel self-attention in consecutive Transformer blocks. The alternate strategy enables DAT to capture the global context and realize inter-block feature aggregation. Furthermore, we propose the adaptive interaction module (AIM) and the spatial-gate feed-forward network (SGFN) to achieve intra-block feature aggregation. AIM complements two self-attention mechanisms from corresponding dimensions. Meanwhile, SGFN introduces additional non-linear spatial information in the feed-forward network. Extensive experiments show that our DAT surpasses current methods. Code and models are obtainable at https://github.com/zhengchen1999/DAT.
Traversability prediction is a fundamental perception capability for autonomous navigation. Deep neural networks (DNNs) have been widely used to predict traversability during the last decade. The performance of DNNs is significantly boosted by exploiting a large amount of data. However, the diversity of data in different domains imposes significant gaps in the prediction performance. In this work, we make efforts to reduce the gaps by proposing a novel pseudo-trilateral adversarial model that adopts a coarse-to-fine alignment (CALI) to perform unsupervised domain adaptation (UDA). Our aim is to transfer the perception model with high data efficiency, eliminate the prohibitively expensive data labeling, and improve the generalization capability during the adaptation from easy-to-access source domains to various challenging target domains. Existing UDA methods usually adopt a bilateral zero-sum game structure. We prove that our CALI model -- a pseudo-trilateral game structure is advantageous over existing bilateral game structures. This proposed work bridges theoretical analyses and algorithm designs, leading to an efficient UDA model with easy and stable training. We further develop a variant of CALI -- Informed CALI (ICALI), which is inspired by the recent success of mixup data augmentation techniques and mixes informative regions based on the results of CALI. This mixture step provides an explicit bridging between the two domains and exposes underperforming classes more during training. We show the superiorities of our proposed models over multiple baselines in several challenging domain adaptation setups. To further validate the effectiveness of our proposed models, we then combine our perception model with a visual planner to build a navigation system and show the high reliability of our model in complex natural environments.
This paper presents a novel study on harnessing Large Language Models' (LLMs) outstanding knowledge and reasoning abilities for explainable financial time series forecasting. The application of machine learning models to financial time series comes with several challenges, including the difficulty in cross-sequence reasoning and inference, the hurdle of incorporating multi-modal signals from historical news, financial knowledge graphs, etc., and the issue of interpreting and explaining the model results. In this paper, we focus on NASDAQ-100 stocks, making use of publicly accessible historical stock price data, company metadata, and historical economic/financial news. We conduct experiments to illustrate the potential of LLMs in offering a unified solution to the aforementioned challenges. Our experiments include trying zero-shot/few-shot inference with GPT-4 and instruction-based fine-tuning with a public LLM model Open LLaMA. We demonstrate our approach outperforms a few baselines, including the widely applied classic ARMA-GARCH model and a gradient-boosting tree model. Through the performance comparison results and a few examples, we find LLMs can make a well-thought decision by reasoning over information from both textual news and price time series and extracting insights, leveraging cross-sequence information, and utilizing the inherent knowledge embedded within the LLM. Additionally, we show that a publicly available LLM such as Open-LLaMA, after fine-tuning, can comprehend the instruction to generate explainable forecasts and achieve reasonable performance, albeit relatively inferior in comparison to GPT-4.