Alert button
Picture for Jingyuan Sun

Jingyuan Sun

Alert button

Tuning In to Neural Encoding: Linking Human Brain and Artificial Supervised Representations of Language

Oct 05, 2023
Jingyuan Sun, Xiaohan Zhang, Marie-Francine Moens

To understand the algorithm that supports the human brain's language representation, previous research has attempted to predict neural responses to linguistic stimuli using embeddings generated by artificial neural networks (ANNs), a process known as neural encoding. However, most of these studies have focused on probing neural representations of Germanic languages, such as English, with unsupervised ANNs. In this paper, we propose to bridge the gap between human brain and supervised ANN representations of the Chinese language. Specifically, we investigate how task tuning influences a pretained Transformer for neural encoding and which tasks lead to the best encoding performances. We generate supervised representations on eight Natural Language Understanding (NLU) tasks using prompt-tuning, a technique that is seldom explored in neural encoding for language. We demonstrate that prompt-tuning yields representations that better predict neural responses to Chinese stimuli than traditional fine-tuning on four tasks. Furthermore, we discover that tasks that require a fine-grained processing of concepts and entities lead to representations that are most predictive of brain activation patterns. Additionally, we reveal that the proportion of tuned parameters highly influences the neural encoding performance of fine-tuned models. Overall, our experimental findings could help us better understand the relationship between supervised artificial and brain language representations.

* ECAI 2023 
Viaarxiv icon

Fine-tuned vs. Prompt-tuned Supervised Representations: Which Better Account for Brain Language Representations?

Oct 03, 2023
Jingyuan Sun, Marie-Francine Moens

To decipher the algorithm underlying the human brain's language representation, previous work probed brain responses to language input with pre-trained artificial neural network (ANN) models fine-tuned on NLU tasks. However, full fine-tuning generally updates the entire parametric space and distorts pre-trained features, cognitively inconsistent with the brain's robust multi-task learning ability. Prompt-tuning, in contrast, protects pre-trained weights and learns task-specific embeddings to fit a task. Could prompt-tuning generate representations that better account for the brain's language representations than fine-tuning? If so, what kind of NLU task leads a pre-trained model to better decode the information represented in the human brain? We investigate these questions by comparing prompt-tuned and fine-tuned representations in neural decoding, that is predicting the linguistic stimulus from the brain activities evoked by the stimulus. We find that on none of the 10 NLU tasks, full fine-tuning significantly outperforms prompt-tuning in neural decoding, implicating that a more brain-consistent tuning method yields representations that better correlate with brain data. Moreover, we identify that tasks dealing with fine-grained concept meaning yield representations that better decode brain activation patterns than other tasks, especially the syntactic chunking task. This indicates that our brain encodes more fine-grained concept information than shallow syntactic information when representing languages.

* IJCAI 2023 
Viaarxiv icon

Decoding Realistic Images from Brain Activity with Contrastive Self-supervision and Latent Diffusion

Sep 30, 2023
Jingyuan Sun, Mingxiao Li, Marie-Francine Moens

Reconstructing visual stimuli from human brain activities provides a promising opportunity to advance our understanding of the brain's visual system and its connection with computer vision models. Although deep generative models have been employed for this task, the challenge of generating high-quality images with accurate semantics persists due to the intricate underlying representations of brain signals and the limited availability of parallel data. In this paper, we propose a two-phase framework named Contrast and Diffuse (CnD) to decode realistic images from functional magnetic resonance imaging (fMRI) recordings. In the first phase, we acquire representations of fMRI data through self-supervised contrastive learning. In the second phase, the encoded fMRI representations condition the diffusion model to reconstruct visual stimulus through our proposed concept-aware conditioning method. Experimental results show that CnD reconstructs highly plausible images on challenging benchmarks. We also provide a quantitative interpretation of the connection between the latent diffusion model (LDM) components and the human brain's visual system. In summary, we present an effective approach for reconstructing visual stimuli based on human brain activity and offer a novel framework to understand the relationship between the diffusion model and the human brain visual system.

* 8 pages,5 figures, 
Viaarxiv icon

Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities

May 26, 2023
Jingyuan Sun, Mingxiao Li, Zijiao Chen, Yunhao Zhang, Shaonan Wang, Marie-Francine Moens

Figure 1 for Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities
Figure 2 for Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities
Figure 3 for Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities
Figure 4 for Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities

Decoding visual stimuli from neural responses recorded by functional Magnetic Resonance Imaging (fMRI) presents an intriguing intersection between cognitive neuroscience and machine learning, promising advancements in understanding human visual perception and building non-invasive brain-machine interfaces. However, the task is challenging due to the noisy nature of fMRI signals and the intricate pattern of brain visual representations. To mitigate these challenges, we introduce a two-phase fMRI representation learning framework. The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations. The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder. The optimized fMRI feature learner then conditions a latent diffusion model to reconstruct image stimuli from brain activities. Experimental results demonstrate our model's superiority in generating high-resolution and semantically accurate images, substantially exceeding previous state-of-the-art methods by 39.34% in the 50-way-top-1 semantic classification accuracy. Our research invites further exploration of the decoding task's potential and contributes to the development of non-invasive brain-machine interfaces.

* 17 pages, 6 figures, conference 
Viaarxiv icon