E-mobility, or electric mobility, has emerged as a pivotal solution to address pressing environmental and sustainability concerns in the transportation sector. The depletion of fossil fuels, escalating greenhouse gas emissions, and the imperative to combat climate change underscore the significance of transitioning to electric vehicles (EVs). This paper seeks to explore the potential of artificial intelligence (AI) in addressing various challenges related to effective energy management in e-mobility systems (EMS). These challenges encompass critical factors such as range anxiety, charge rate optimization, and the longevity of energy storage in EVs. By analyzing existing literature, we delve into the role that AI can play in tackling these challenges and enabling efficient energy management in EMS. Our objectives are twofold: to provide an overview of the current state-of-the-art in this research domain and propose effective avenues for future investigations. Through this analysis, we aim to contribute to the advancement of sustainable and efficient e-mobility solutions, shaping a greener and more sustainable future for transportation.
Although a typical autopilot system far surpasses humans in term of sensing accuracy, performance stability and response agility, such a system is still far behind humans in the wisdom of understanding an unfamiliar environment with creativity, adaptivity and resiliency. Current AD brains are basically expert systems featuring logical computations, which resemble the thinking flow of a left brain working at tactical level. A right brain is needed to upgrade the safety of automated driving vehicle onto next generation by making intuitive strategical judgements that can supervise the tactical action planning. In this work, we present the concept of an Automated Driving Strategical Brain (ADSB): a framework of a scene perception and scene safety evaluation system that works at a higher abstraction level, incorporating experience referencing, common-sense inferring and goal-and-value judging capabilities, to provide a contextual perspective for decision making within automated driving planning. The ADSB brain architecture is made up of the Experience Referencing Engine (ERE), the Common-sense Referencing Engine (CIE) and the Goal and Value Keeper (GVK). 1,614,748 cases from FARS/CRSS database of NHTSA in the period 1975 to 2018 are used for the training of ERE model. The kernel of CIE is a trained model, COMET-BART by ATOMIC, which can be used to provide directional advice when tactical-level environmental perception conclusions are ambiguous; it can also use future scenario models to remind tactical-level decision systems to plan ahead of a perceived hazard scene. GVK can take in any additional expert-hand-written rules that are of qualitative nature. Moreover, we believe that with good scalability, the ADSB approach provides a potential solution to the problem of long-tail corner cases encountered in the validation of a rule-based planning algorithm.
Image cropping has progressed tremendously under the data-driven paradigm. However, current approaches do not account for the intentions of the user, which is an issue especially when the composition of the input image is complex. Moreover, labeling of cropping data is costly and hence the amount of data is limited, leading to poor generalization performance of current algorithms in the wild. In this work, we take advantage of vision-language models as a foundation for creating robust and user-intentional cropping algorithms. By adapting a transformer decoder with a pre-trained CLIP-based detection model, OWL-ViT, we develop a method to perform cropping with a text or image query that reflects the user's intention as guidance. In addition, our pipeline design allows the model to learn text-conditioned aesthetic cropping with a small cropping dataset, while inheriting the open-vocabulary ability acquired from millions of text-image pairs. We validate our model through extensive experiments on existing datasets as well as a new cropping test set we compiled that is characterized by content ambiguity.
In this work, we consider the problem of designing secure and efficient federated learning (FL) frameworks. Existing solutions either involve a trusted aggregator or require heavyweight cryptographic primitives, which degrades performance significantly. Moreover, many existing secure FL designs work only under the restrictive assumption that none of the clients can be dropped out from the training protocol. To tackle these problems, we propose SEFL, a secure and efficient FL framework that (1) eliminates the need for the trusted entities; (2) achieves similar and even better model accuracy compared with existing FL designs; (3) is resilient to client dropouts. Through extensive experimental studies on natural language processing (NLP) tasks, we demonstrate that the SEFL achieves comparable accuracy compared to existing FL solutions, and the proposed pruning technique can improve runtime performance up to 13.7x.
Pre-trained large-scale language models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. However, the limited weight storage and computational speed on hardware platforms have impeded the popularity of pre-trained models, especially in the era of edge computing. In this work, we propose an efficient transformer-based large-scale language representation using hardware-friendly block structure pruning. We incorporate the reweighted group Lasso into block-structured pruning for optimization. Besides the significantly reduced weight storage and computation, the proposed approach achieves high compression rates. Experimental results on different models (BERT, RoBERTa, and DistilBERT) on the General Language Understanding Evaluation (GLUE) benchmark tasks show that we achieve up to 5.0x with zero or minor accuracy degradation on certain task(s). Our proposed method is also orthogonal to existing compact pre-trained language models such as DistilBERT using knowledge distillation, since a further 1.79x average compression rate can be achieved on top of DistilBERT with zero or minor accuracy degradation. It is suitable to deploy the final compressed model on resource-constrained edge devices.
In natural language processing (NLP), the "Transformer" architecture was proposed as the first transduction model replying entirely on self-attention mechanisms without using sequence-aligned recurrent neural networks (RNNs) or convolution, and it achieved significant improvements for sequence to sequence tasks. The introduced intensive computation and storage of these pre-trained language representations has impeded their popularity into computation and memory-constrained devices. The field-programmable gate array (FPGA) is widely used to accelerate deep learning algorithms for its high parallelism and low latency. However, the trained models are still too large to accommodate to an FPGA fabric. In this paper, we propose an efficient acceleration framework, Ftrans, for transformer-based large scale language representations. Our framework includes enhanced block-circulant matrix (BCM)-based weight representation to enable model compression on large-scale language representations at the algorithm level with few accuracy degradation, and an acceleration design at the architecture level. Experimental results show that our proposed framework significantly reduces the model size of NLP models by up to 16 times. Our FPGA design achieves 27.07x and 81x improvement in performance and energy efficiency compared to CPU, and up to 8.80x improvement in energy efficiency compared to GPU.
The lethal nature of pancreatic ductal adenocarcinoma (PDAC) calls for early differential diagnosis of pancreatic cysts, which are identified in up to 16% of normal subjects, and some of which may develop into PDAC. Previous computer-aided developments have achieved certain accuracy for classification on segmented cystic lesions in CT. However, pancreatic cysts have a large variation in size and shape, and the precise segmentation of them remains rather challenging, which restricts the computer-aided interpretation of CT images acquired for differential diagnosis. We propose a computer-aided framework for early differential diagnosis of pancreatic cysts without pre-segmenting the lesions using densely-connected convolutional networks (Dense-Net). The Dense-Net learns high-level features from whole abnormal pancreas and builds mappings between medical imaging appearance to different pathological types of pancreatic cysts. To enhance the clinical applicability, we integrate saliency maps in the framework to assist the physicians to understand the decision of the deep learning method. The test on a cohort of 206 patients with 4 pathologically confirmed subtypes of pancreatic cysts has achieved an overall accuracy of 72.8%, which is significantly higher than the baseline accuracy of 48.1%, which strongly supports the clinical potential of our developed method.
Recently, Deep Convolutional Neural Network (DCNN) has achieved tremendous success in many machine learning applications. Nevertheless, the deep structure has brought significant increases in computation complexity. Largescale deep learning systems mainly operate in high-performance server clusters, thus restricting the application extensions to personal or mobile devices. Previous works on GPU and/or FPGA acceleration for DCNNs show increasing speedup, but ignore other constraints, such as area, power, and energy. Stochastic Computing (SC), as a unique data representation and processing technique, has the potential to enable the design of fully parallel and scalable hardware implementations of large-scale deep learning systems. This paper proposed an automatic design allocation algorithm driven by budget requirement considering overall accuracy performance. This systematic method enables the automatic design of a DCNN where all design parameters are jointly optimized. Experimental results demonstrate that proposed algorithm can achieve a joint optimization of all design parameters given the comprehensive budget of a DCNN.